This work investigates the performance of a novel compliant needle for cutting tissue. The novel cutting geometry transfers axial vibration to transverse motion at the tip. The cutting edge of the geometry is defined in terms of the time-dependent inclination and rake angle. Finite element analysis was performed to determine the compliant geometry effect on the axial vibration modes of the needles. An ultrasonic transducer is used to apply the axial vibration. An ultrasonic horn was developed to increase the amplitude of vibration. Experiments were performed to determine the effectiveness of the compliant needle geometry. The motion of the compliant needle is measured with a stereomicroscope. The two compliant geometries developed transverse motion of 4.5 μm and 16.0 μm. The control needle with fixed geometry developed no measured transverse motion. The insertion force was recorded for two different compliant geometries and a control geometry inserted into a polyurethane sheet. The puncture force of the control needle with applied vibration and the two compliant needles was up to 29.5% lower than the control insertion without applied vibration. The compliant needles reduced the friction force up to 71.0%. The significant reduction of the friction force is explained by the compliant needles' ability to create a larger crack in the material because of their transverse motion.

References

References
1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
2.
Nath
,
S.
,
Chen
,
Z.
,
Yue
,
N.
,
Trumpore
,
S.
, and
Peschel
,
R.
,
2000
, “
Dosimetric Effects of Needle Divergence in Prostate Seed Implant Using I-125 and Pd-103 Radioactive Seeds
,”
Med. Phys.
,
27
(
5
), pp.
1058
1066
.
3.
Abolhassani
,
N.
, and
Patel
,
R.
,
2006
, “
Deflection of a Flexible Needle During Insertion Into Soft Tissue
,”
28th Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society, New York, Aug. 30–Sept. 3, pp.
3858
3861
.
4.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2009
, “
Fast Needle Insertion to Minimize Tissue Deformation and Damage
,”
IEEE International Conference on Robotics and Automation
,
ICRA ‘09
, Kobe, Japan, May 12–17, pp.
3097
3102
.
5.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2003
, “
Needle Insertion Modeling and Simulation
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
864
875
.
6.
van Veen
,
Y. R. J.
,
Jahya
,
A.
, and
Misra
,
S.
,
2012
, “
Macroscopic and Microscopic Observations of Needle Insertion Into Gels
,”
Proc. Inst. Mech. Eng. Part H
,
226
(
6
), pp.
441
449
.
7.
Davis
,
S. P.
,
Landis
,
B. J.
,
Adams
,
Z. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2004
, “
Insertion of Microneedles Into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force
,”
J. Biomech.
,
37
(
8
), pp.
1155
1163
.
8.
Kaushik
,
S.
,
Hord
,
A. H.
,
Denson
,
D. D.
,
McAllister
,
D. V.
,
Smitra
,
S.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2001
, “
Lack of Pain Associated With Microfabricated Microneedles
,”
Anesth. Analg.
,
92
(
2
), pp.
502
504
.
9.
Park
,
J. H.
,
Yoon
,
Y. K.
,
Choi
,
S. O.
,
Prausnitz
,
M. R.
, and
Allen
,
M. G.
,
2007
, “
Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
903
913
.
10.
Hirsch
,
L.
,
Gibney
,
M.
,
Berube
,
J.
, and
Manocchio
,
J.
,
2012
, “
Impact of a Modified Needle Tip Geometry on Penetration Force as Well as Acceptability, Preference, and Perceived Pain in Subjects With Diabetes
,”
J. Diabetes Sci. Technol.
,
6
(
2
), pp.
328
335
.
11.
Vedrine
,
L.
,
Prais
,
W.
,
Laurent
,
P. E.
,
Raynal-Olive
,
C.
, and
Fantino
,
M.
,
2003
, “
Improving Needle-Point Sharpness in Prefillable Syringes
,”
Med. Device Technol.
,
14
(
4
), pp.
32
35
.
12.
Wang
,
Y. C.
,
Tai
,
B. L.
,
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
The Needle With Lancet Point: Geometry for Needle Tip Grinding and Tissue Insertion Force
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041010
.
13.
Moore
,
J. Z.
,
Zhang
,
Q. H.
,
McGill
,
C. S.
,
Zheng
,
H. J.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2010
, “
Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051005
.
14.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2004
, “
Trajectory Generation for Robotic Needle Insertion in Soft Tissue
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
IEMBS '04
, San Francisco, CA, Sept. 1–5, pp.
2730
2733
.
15.
Heverly
,
M.
,
Dupont
,
P.
, and
Triedman
,
J.
,
2005
, “
Trajectory Optimization for Dynamic Needle Insertion
,”
IEEE
International Conference on Robotics and Automation
, Apr. 18–22, pp.
1646
1651
.
16.
Kobayashi
,
Y.
,
Sato
,
T.
, and
Fujie
,
M. G.
,
2009
, “
Modeling of Friction Force Based on Relative Velocity Between Liver Tissue and Needle for Needle Insertion Simulation
,”
Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society, Minneapolis, MN, Sept. 3–6, pp.
5274
5278
.
17.
Barnett
,
A. C.
,
Lee
,
Y.-S.
, and
Moore
,
J. Z.
,
2015
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011005
.
18.
Frick
,
T. B.
,
Marucci
,
D. D.
,
Cartmill
,
J. A.
,
Martin
,
C. J.
, and
Walsh
,
W. R.
,
2001
, “
Resistance Forces Acting on Suture Needles
,”
J. Biomech.
,
34
(
10
), pp.
1335
1340
.
19.
Koelmans
,
W.
,
Krishnamoorthy
,
G.
,
Heskamp
,
A.
,
Wissink
,
J.
,
Misra
,
S.
, and
Tas
,
N.
,
2013
, “
Microneedle Characterization Using a Double-Layer Skin Simulant
,”
Mech. Eng. Res.
,
3
(
2
), pp.
51
63
.
20.
Nishimura
,
G.
,
Jimbo
,
Y.
, and
Shimakawa
,
S.
,
1954
, “
Ultrasonic Machining-Part I
,”
J. Fac. Eng. Univ. Tokyo
,
24
(
3
), pp.
65
100
.
21.
Suzuki
,
H.
, and
Yagishita
,
H.
,
2005
, “
Burrless Drilling by Vibration Cutting Applying Ultrasonic Torsional Mode Vibration
,”
Trans. MAMRI/SME
,
33
, pp.
461
468
.
22.
Takeyama
,
H.
, and
Kato
,
S.
,
1991
, “
Burrless Drilling by Means of Ultrasonic Vibration
,”
CIRP Ann. Manuf. Technol.
,
40
(
1
), pp.
83
86
.
23.
Neppiras
,
E.
,
1964
, “
Ultrasonic Machining and Forming
,”
Ultrasonics
,
2
(
4
), pp.
167
173
.
24.
Aoki
,
S.
,
Hirai
,
S.
, and
Nishimura
,
T.
,
2005
, “
Prevention From Delamination of Composite Material During Drilling Using Ultrasonic Vibration
,”
Key Eng. Mater.
,
291–292
, pp.
465
470
.
25.
Liu
,
C. S.
,
Zhao
,
B.
,
Gao
,
G. F.
, and
Zhang
,
X. H.
,
2005
, “
Study on Ultrasonic Vibration Drilling of Particulate Reinforced Aluminum Matrix Composites
,”
Key Eng. Mater.
,
291–292
, pp.
447
452
.
26.
Balamuth
,
L.
,
1966
, “
Ultrasonic Assistance to Conventional Metal Removal
,”
Ultrasonics
,
4
(
3
), pp.
125
130
.
27.
Chern
,
G. L.
, and
Liang
,
J. M.
,
2007
, “
Study on Boring and Drilling With Vibration Cutting
,”
Int. J. Mach. Tool Manuf.
,
47
(
1
), pp.
133
140
.
28.
James
,
S.
, and
Sundaram
,
M. M.
,
2015
, “
Modeling of Material Removal Rate in Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021008
.
29.
Pujana
,
J.
,
Rivero
,
A.
,
Celaya
,
A.
, and
de Lacalle
,
L. N. L.
,
2009
, “
Analysis of Ultrasonic-Assisted Drilling of Ti6Al4V
,”
Int. J. Mach. Tool Manuf.
,
49
(
6
), pp.
500
508
.
30.
Wang
,
X.
,
Wang
,
L. J.
, and
Tao
,
J. P.
,
2004
, “
Investigation on Thrust in Vibration Drilling of Fiber-Reinforced Plastics
,”
J. Mater. Process. Technol.
,
148
(
2
), pp.
239
244
.
31.
Yang
,
M.
, and
Zahn
,
J. D.
,
2004
, “
Microneedle Insertion Force Reduction Using Vibratory Actuation
,”
Biomed. Microdevices
,
6
(
3
), pp.
177
182
.
32.
Huang
,
Y. C.
,
Tsai
,
M. C.
, and
Lin
,
C. H.
,
2012
, “
A Piezoelectric Vibration-Based Syringe for Reducing Insertion Force
,”
IOP. Conf. Ser. Mater. Sci. Eng.
,
42
, pp.
1
4
.
33.
Izumi
,
H.
,
Yajima
,
T.
,
Aoyagi
,
S.
,
Tagawa
,
N.
,
Arai
,
Y.
, and
Hirata
,
M.
,
2008
, “
Combined Harpoonlike Jagged Microneedles Imitating Mosquito's Proboscis and Its Insertion Experiment With Vibration
,”
IEEJ Trans. Electr. Electron. Eng.
,
3
(
4
), pp.
425
431
.
34.
Begg
,
N. D.
, and
Slocum
,
A. H.
,
2014
, “
Audible Frequency Vibration of Puncture-Access Medical Devices
,”
Med. Eng. Phys.
,
36
(
3
), pp.
371
377
.
35.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
36.
Datla
,
N. V.
,
Konh
,
B.
, and
Hutapea
,
P.
,
2014
, “
A Flexible Active Needle for Steering in Soft Tissues
,”
40th Annual Northeast Bioengineering Conference
(
NEBEC
), Boston, MA, Apr. 25–27, pp.
1
2
.
37.
Podder
,
T. K.
,
Dicker
,
A. P.
,
Hutapea
,
P.
,
Darvish
,
K.
, and
Yu
,
Y.
,
2012
, “
A Novel Curvilinear Approach for Prostate Seed Implantation
,”
Med. Phys.
,
39
(
4
), pp.
1887
1892
.
38.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
2564
2569
.
39.
Lagerburg
,
V.
,
Moerland
,
M. A.
,
Lagendijk
,
J. J. W.
, and
Battermann
,
J. J.
,
2005
, “
Measurement of Prostate Rotation During Insertion of Needles for Brachytherapy
,”
Radiother. Oncol.
,
77
(
3
), pp.
318
323
.
40.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
41.
Tcherniak
,
D.
,
2002
, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
42.
Boothroyd
,
G. K.
, and
Winston
,
A.
,
2006
,
Fundamentals of Machining and Machine Tools
,
Taylor & Francis
,
Boca Raton, FL
.
43.
Moore
,
J. Z.
,
Shih
,
A. J.
,
McLaughlin
,
P.
,
McGill
,
C.
,
Zhang
,
Q.
, and
Zheng
,
H.
,
2009
, “
Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
,”
Trans. NAMRI/SME
,
37
, pp.
49
56
.
44.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibration
,
MacMillan Company
,
New York
.
45.
Seah
,
K. H. W.
,
Wong
,
Y. S.
, and
Lee
,
L. C.
,
1993
, “
Design of Tool Holders for Ultrasonic Machining Using FEM
,”
J. Mater. Process. Technol.
,
37
(
1–4
), pp.
801
816
.
46.
Gilchrist
,
M. D.
,
Keenan
,
S.
,
Curtis
,
M.
,
Cassidy
,
M.
,
Byrne
,
G.
, and
Destrade
,
M.
,
2008
, “
Measuring Knife Stab Penetration Into Skin Simulant Using a Novel Biaxial Tension Device
,”
Forensic Sci. Int.
,
177
(
1
), pp.
52
65
.
47.
McCarthy
,
C. T.
,
Hussey
,
M.
, and
Gilchrist
,
M. D.
,
2007
, “
On the Sharpness of Straight Edge Blades in Cutting Soft Solids: Part I—Indentation Experiments
,”
Eng. Fract. Mech.
,
74
(
14
), pp.
2205
2224
.
48.
Benedict
,
G. F.
,
1987
,
Nontraditional Manufacturing Processes
,
CRC Press
,
New York
.
You do not currently have access to this content.