The use of fluid in grinding enhances heat exchange at the contact zone and reduces grinding temperature. However, the massive use of fluid can cause negative influences on environment and machining cost. In this paper, a novel method of reducing grinding temperature based on heat pipe technology is proposed. One new heat pipe grinding wheel and its heat transfer principle are briefly introduced. A heat transfer mathematical model is established to calculate equivalent thermal conductivity of heat pipe grinding wheel. Compared with the wheel without heat pipe, heat transfer effect of heat pipe grinding wheel is presented, and the influences of heat flux input, cooling condition, wheel speed, and liquid film thickness on heat transfer performance are investigated. Furthermore, dry grinding experiments with two different wheels are conducted to verify the cooling effectiveness on grinding temperature. The results show that thermal conductivity of the wheel with heat pipe can be greatly improved compared to the one without heat pipe; heat transfer performance of heat pipe grinding wheel can change with different grinding conditions; meanwhile, grinding temperatures can be significantly decreased by 50% in dry grinding compared with the wheel without heat pipe.

References

References
1.
Tawakoli
,
T.
,
Hadad
,
M. J.
,
Sadeghi
,
M. H.
,
Daneshi
,
A.
,
Stöckert
,
S.
, and
Rasifard
,
A.
,
2009
, “
An Experimental Investigation of the Effects of Workpiece and Grinding Parameters on Minimum Quantity Lubrication—MQL Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
924
932
.
2.
Shao
,
Y.
,
Fergani
,
O.
,
Ding
,
Z. S.
,
Li
,
B. Z.
, and
Liang
,
S. Y.
,
2015
, “
Experimental Investigation of Residual Stress in Minimum Quantity Lubrication Grinding
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011009
.
3.
Li
,
K. M.
,
Hu
,
Y. M.
,
Yang
,
Z. Y.
, and
Chen
,
M. Y.
,
2012
, “
Experimental Study on Vibration-Assisted Grinding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041009
.
4.
Nguyen
,
T.
,
Liu
,
M.
, and
Zhang
,
L. C.
,
2014
, “
Cooling by Sub-Zero Cold Air Jet in the Grinding of a Cylindrical Component
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
341
352
.
5.
Dilip Jerold
,
B.
, and
Pradeep Kumar
,
M.
,
2013
, “
The Influence of Cryogenic Coolants in Machining of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031005
.
6.
Manimaran
,
G.
,
Pradeep Kumar
,
M.
, and
Venkatasamy
,
R.
,
2014
, “
Influence of Cryogenic Cooling on Surface Grinding of Stainless Steel 316
,”
Cryogenics
,
59
, pp.
76
83
.
7.
Webster
,
J. A.
,
Cui
,
C.
, and
Mindek
,
R. B.
, Jr.
,
1995
, “
Grinding Fluid Application System Design
,”
Ann. CIRP
,
44
(
1
), pp.
333
338
.
8.
Ramesh
,
K.
,
Yeo
,
S. H.
,
Zhong
,
Z. W.
, and
Sim
,
K. C.
,
2001
, “
Coolant Shoe Development for High-Efficiency Grinding
,”
J. Mater. Process. Technol.
,
114
(
3
), pp.
240
245
.
9.
Aurich
,
J. C.
, and
Kirsch
,
B.
,
2013
, “
Improved Coolant Supply Through Slotted Grinding Wheel
,”
Ann. CIRP
,
62
(
1
), pp.
363
366
.
10.
Pal
,
B.
,
Chattopadhyay
,
A. K.
, and
Chattopadhyay
,
A. B.
,
2010
, “
Development and Performance Evaluation of Monolayer Brazed cBN Grinding Wheel on Bearing Steel
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
935
944
.
11.
Mukhopadhyay
,
D.
,
Banerjee
,
S.
, and
Reddy
,
N. S.
,
2007
, “
Investigation to Study the Applicability of Solid Lubricant in Turning AISI 1040 Steel
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
520
526
.
12.
Alberts
,
M.
,
Kalaitzido
,
K.
, and
Melkote
,
S.
,
2009
, “
An Investigation of Graphite Nanoplatelets as Lubricant in Grinding
,”
Int. J. Adv. Manuf. Technol.
,
49
(
12–13
), pp.
966
970
.
13.
Ding
,
W. F.
,
Miao
,
Q.
,
Xu
,
J. H.
,
Chen
,
Z. Z.
,
Yang
,
C. Y.
, and
Fu
,
Y. C.
,
2013
, “
Preparation Mechanism and Grinding Performance of Single-Layer Self-Lubrication Brazed CBN Abrasive Wheels
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
249
255
.
14.
Liu
,
J.
, and
Chou
,
Y. K.
,
2007
, “
Cutting Tool Temperature Analysis in Heat-Pipe Assisted Composite Machining
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
902
910
.
15.
Zhu
,
L.
,
Jen
,
T. C.
,
Liu
,
Y. B.
,
Zhao
,
J. W.
,
Liu
,
W. L.
, and
Yen
,
Y. H.
,
2015
, “
Cutting Tool Life Analysis in Heat-Pipe Assisted Drilling Operations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011008
.
16.
He
,
Q. S.
,
Fu
,
Y. C.
,
Xu
,
H. J.
,
Ma
,
K.
, and
Chen
,
C.
,
2013
, “
Development of Annular Heat Pipe Grinding Wheel for High Efficiency Machining of TC4 Titanium Alloy
,”
Acta Aeronaut. Astronaut. Sin.
,
34
(
7
), pp.
1740
1747
.
17.
He
,
Q. S.
,
Fu
,
Y. C.
,
Xu
,
H. J.
, and
Ma
,
K.
,
2014
, “
Investigation of a Heat Pipe Cooling System in High-Efficiency Grinding
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
833
842
.
18.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2004
, “
Experimental Investigation on the Heat Transfer Characteristics of Axial Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4721
4731
.
19.
Pu
,
X. F.
,
Xu
,
H. J.
,
Hu
,
X. F.
, and
Zhang
,
Y. Z.
,
1988
, “
Workpiece Burn and Its Prediction in Creep Grinding—Experimental Research of the Temperature Variance Process in Contact Zone
,”
Ann. CIRP
,
37
(
1
), pp.
541
544
.
20.
Xu
,
H. J.
,
Xu
,
X. P.
,
Lin
,
T.
, and
Zhang
,
Y. Z.
,
1994
, “
Analysis on the Temperature Field of Workpiece Surface Layer During Intermittent Grinding
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
30
36
.
You do not currently have access to this content.