This paper presents a mathematical model to find the wheel location in grinding a given helical flute of an end mill. Two new setting parameters are introduced to define the relative wheel location in workpiece coordinates. This model allows the wheel-axis orientation be expressed explicitly as a function of the design factors and machine setting parameters. By utilizing this explicit form of the wheel orientation and analyzing the influence of setting parameters on design parameters, a new efficient search algorithm is proposed, and the performance shows that the required wheel location is found within 1.5 s to machine a given flute profile. Moreover, the rake angle can be produced more precisely compared with the conventional methods, which have been used with approximations. A comprehensive development of the software for designing and grinding the helical flute of the end mill is presented, which provides a technology and good foundation for the development of a computer-aided design and computer-aided manufacturing (CAD/CAM) system for manufacturing end mills. The results of the experiment, simulation, and design are compared in order to verify of the proposed method.

References

References
1.
Kaldor
,
S.
,
Rafael
,
A. M.
, and
Messinger
,
D.
,
1988
, “
On the CAD of Profile for Cutters and Helical Flutes-Geometrical Aspects
,”
Ann. CIRP
,
37
(
1
), pp.
53
56
.
2.
Sheth
,
D. S.
, and
Malkin
,
S.
,
1990
, “
CAD/CAM for Geometry and Process Analysis of Helical Groove Machining
,”
Ann. CIRP
,
39
(
1
), pp.
129
132
.
3.
Kang
,
S. K.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
1996
, “
A CAD Approach to Helical Groove Machining-I. Mathematical Model and Model Solution
,”
Int. J. Mach. Tools Manuf.
,
36
(
1
), pp.
141
153
.
4.
Ehmann
,
K. F.
,
1990
, “
Grinding Wheel Profile Definition for the Manufacture of Drill Flutes
,”
Ann. CIRP
,
39
(
1
), pp.
153
156
.
5.
Kang
,
S. K.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
1997
, “
A CAD Approach to Helical Groove Machining. Part 2: Numerical Evaluation and Sensitivity Analysis
,”
Int. J. Mach. Tools Manuf.
,
37
(
1
), pp.
101
117
.
6.
Hsieh
,
J. F.
,
2006
, “
Mathematical Model and Sensitivity Analysis for Helical Groove Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
1
), pp.
1087
1096
.
7.
Li
,
G.
,
Sun
,
J.
, and
Li
,
J.
,
2014
, “
Modeling and Analysis of Helical Groove Grinding in End Mill Machining
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3067
3076
.
8.
Ko
,
S. L.
,
1994
, “
Geometrical Analysis of Helical Flute Grinding and Application to End Mill
,”
Trans. NAMRI/SME
,
22
, pp.
165
172
.
9.
Kim
,
J. H.
,
Park
,
J. W.
, and
Ko
,
T. J.
,
2008
, “
End Mill Design and Machining Via Cutting Simulation
,”
Comput.-Aided Des.
,
40
(
3
), pp.
324
333
.
10.
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2007
, “
Automated Drill Modeling for Drilling Process Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
3
), pp.
276
282
.
11.
Karpuschewski
,
B.
,
Jandecka
,
K.
, and
Mourek
,
D.
,
2011
, “
Automatic Search for Wheel Position in Flute Grinding of Cutting Tools
,”
Ann. CIRP
,
60
(
1
), pp.
347
350
.
12.
Rababah
,
M. M.
, and
Chen
,
Z. C.
,
2013
, “
An Automated and Accurate CNC Programming Approach to Five-Axis Flute Grinding of Cylindrical End-Mills Using Direct Method
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011011
.
13.
Fontaine
,
M.
,
Devillez
,
A.
, and
Dudzinski
,
D.
,
2007
, “
Analytical Simulation of Milling: Influence of Tool Design on Cutting Forces
,”
Twelfth World Congress in Mechanism and Machine Science
, Besancon, France.
14.
Kang
,
D.
, and
Armarego
,
E. J. A.
,
2003
, “
Computer-Aided Geometrical Analysis of the Fluting Operation for Twist Drill Design and Production. I. Forward Analysis and Generated Flute Profile
,”
Mach. Sci. Technol.
,
7
(
2
), pp.
221
248
.
15.
Nguyen
,
V. H.
, and
Ko
,
S. L.
,
2013
, “
Determination of Workpiece Profile and Influence of Singular Point to Helical Grooving
,”
Ann. CIRP
,
62
(
1
), pp.
323
326
.
16.
Wang
,
W. P.
, and
Wang
,
K. K.
,
1986
, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graph. Appl.
,
6
(
12
), pp.
8
17
.
17.
Frey
,
D. D.
,
Otto
,
K. N.
, and
Pflager
,
W.
,
1997
, “
Swept Envelopes of Cutting Tools in Integrated Machine and Error Budgeting
,”
Ann. CIRP
,
46
(
1
), pp.
475
480
.
18.
Nguyen
,
V. H.
, and
Ko
,
S. L.
,
2014
, “
A Mathematical Model for Simulating and Manufacturing Ball End Mill
,”
Comput.-Aided Des.
,
50
, pp.
16
26
.
19.
Fromentin
,
G.
,
Benjamin
,
D.
, and
Lung
,
D.
,
2015
, “
Computerized Simulation of Interference in Thread Milling of Non-Symmetric Thread Profiles
,”
Proc. CIRP
,
31
, pp.
496
501
.
20.
Lee
,
S.-W.
, and
Nestler
,
A.
,
2011
, “
Complete Swept Volume Generation, Part I: Swept Volume of Piecewise C1-Continuous Cutter at Five-Axis Milling Via Gauss Map
,”
Comput.-Aided Des.
,
43
(
4
), pp.
427
441
.
21.
Feng
,
X.
, and
Hongzan
,
B.
,
2003
, “
CNC Rake Grinding for Taper Ball-End Mill With a Torus-Shaped Grinding Wheel
,”
Int. J. Adv. Manuf. Technol.
,
21
(
8
), pp.
549
555
.
22.
Lin
,
P. D.
,
2014
, “
Computer Numerical Control Grinding Wheel Pose for Thinned/Notched Drill Points With Specifiable Secondary Cutting Edge and Characteristic Angles
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041002
.
23.
Barbara
,
S. L.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
060801
.
24.
Jiang
,
Z.
,
Yin
,
Y.
, and
Chen
,
X.
,
2015
, “
Geometric Error Modeling, Separation, and Compensation of Tilted Toric Wheel in Fewer-Axis Grinding for Large Complex Optical Mirrors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031003
.
You do not currently have access to this content.