A method is introduced for efficient reliability-based design of laser peening (LP) surface treatment to extend fatigue life of metal components. The method includes nonparametric probability density estimation, surrogate modeling using a new finite element (FE or FEA) approach, and reliability analysis with correlated random variables (RVs). Efficient LP simulation is achieved via a new technique termed single explicit analysis using time-dependent damping (SEATD), which reduces simulation times by a factor of 6. The example study of a three-point bend coupon reveals that fatigue life reliability significantly affects optimal LP design, as 52 laser spots are needed for 99% reliability versus 44 spots for 95%.

References

References
1.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening, Process Performance and Simulation
,
CRC Press
,
Boca Raton, FL
.
2.
Clauer
,
A. H.
,
Walters
,
C. T.
, and
Ford
,
S. C.
,
1983
, “
The Effects of Laser Shock Processing on the Fatigue Properties of 2024-T3 Aluminum
,”
Lasers in Material Processing
,
E. A.
Metzbower
, ed.,
American Society for Metals
,
Metals Park, OH
, pp.
7
22
.
3.
Johnson
,
J. N.
, and
Rohde
,
R. W.
,
1971
, “
Dynamic Deformation Twinning in Shock-Loaded Iron
,”
J. Appl. Phys.
,
42
(
11
), pp.
4171
4182
.
4.
Ballard
,
P.
,
Fournier
,
J.
,
Fabbro
,
R.
, and
Frelat
,
J.
,
1991
, “
Residual Stresses Induced by Laser-Shocks
,”
J. Phys. IV
,
1
(C
3
), pp.
487
494
.
5.
Braisted
,
W. R.
, and
Brockman
,
R. A.
,
1999
, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
,
21
(
7
), pp.
719
724
.
6.
Wu
,
B. X.
, and
Shin
,
Y. C.
,
2005
, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
,
97
(
11
), p.
113517
.
7.
Zhang
,
W.
,
Yao
,
Y. L.
, and
Noyan
,
I. C.
,
2004
, “
Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
10
17
.
8.
Spradlin
,
T. J.
,
2011
, “
Process Sequencing for Fatigue Life Extension of Large Scale Laser Peened Components
,” Ph.D. thesis, Wright State University, Dayton, OH.
9.
Peyre
,
P.
,
Chaieb
,
I.
, and
Braham
,
C.
,
2007
, “
FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci.
,
15
(
3
), pp.
205
221
.
10.
Singh
,
G.
, and
Grandhi
,
R.
,
2010
, “
Mixed-Variable Optimization Strategy Employing Multifidelity Simulation and Surrogate Models
,”
AIAA J.
,
48
(
1
), pp.
215
223
.
11.
Brockman
,
R. A.
,
Braisted
,
W. R.
,
Olson
,
S. E.
,
Tenaglia
,
R. D.
,
Clauer
,
A. H.
,
Langer
,
K.
, and
Shepard
,
M. J.
,
2012
, “
Prediction and Characterization of Residual Stress From Laser Shock Peening
,”
Int. J. Fatigue
,
36
(
3
), pp.
96
108
.
12.
Peyre
,
P.
,
Berthe
,
L.
,
Vignal
,
V.
,
Popa
,
I.
, and
Baudin
,
T.
,
2012
, “
Analysis of Laser Shock Waves and Resulting Surface Deformations in an Al–Cu–Li Aluminum Alloy
,”
J. Phys. D: Appl. Phys.
,
45
(
33
), p.
335304
.
13.
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Vasudevan
,
V. K.
, and
Qian
,
D.
,
2013
, “
Simulation-Based Optimization Of Laser Shock Peening Process For Improved Bending Fatigue Life of Ti–6Al–2Sn–4Zr–2Mo Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
464
474
.
14.
Hu
,
Y.
,
Han
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2010
, “
Three-Dimensional Numerical Simulation and Experimental Study of Sheet Metal Bending by Laser Peen Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061001
.
15.
ABAQUS Keywords Reference Guide, v6.13
,
2013
, Dassault Systèmes.
16.
Hasser
,
P. J.
,
2014
, “
An Efficient Reliability-Based Simulation Framework for Optimum Laser Peening Treatment
,” M.S. thesis, Saint Louis University, St. Louis, MO.
17.
Cook
,
R.
,
Malkus
,
D.
,
Plesha
,
M.
, and
Witt
,
R.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
Hoboken, NJ
, Chap. 17.
18.
ABAQUS Theory Guide, (v6.13)
,
2013
, Dassault Systèmes.
19.
Hu
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2006
, “
3-D FEM Simulation of Laser Shock Peening
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1426
1435
.
20.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Difference of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonary Dam
,”
R. Soc. London Philos. Trans. A
,
210
(
45
), pp.
307
357
.
21.
Underwood
,
P.
,
1983
,
Dynamic Relaxation, in Computational Method for Transient Analysis
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
245
256
.
22.
Cao
,
Y.
,
Shin
,
Y. C.
, and
Wu
,
B.
,
2010
, “
Parametric Study on Single Shot and Overlapping Laser Shock Peening on Various Metals Via Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061010
.
23.
Clauer
,
A. H.
,
Holbrook
,
J. H.
, and
Fairand
,
B. P.
,
1981
, “
Effects of Laser Induced Shockwaves on Metals
,”
Shock Waves and High-Strain-Rate Phenomena in Metals
,
M. A.
Meyers
and
L. E.
Murr
, eds.,
Plenum Publishing
,
New York
, Chap. 38.
24.
Clauer
,
A. H.
,
1996
, “
Laser Shock Peening for Fatigue Resistance
,”
Surface Performance of Titanium
,
J. K.
Gregory
,
H. J.
Rack
,
and
D.
Eylon
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
217
230
.
25.
Peyre
,
P.
, and
Fabbro
,
R.
,
1995
, “
Laser Shock Processing: A Review of the Physics and Applications
,”
Opt. Quantum Electron.
,
27
(
12
), pp.
1213
1229
.
26.
Singh
,
G.
,
Ocampo
,
J.
,
Millwater
,
H.
, and
Clauer
,
A.
,
2012
, “
Simulation-Based Crack Growth Mitigation Through Optimum Laser Peened Residual Stress
,”
Int. J. Struct. Integr.
,
3
(
3
), pp.
236
259
.
27.
Hu
,
Y.
,
Li
,
Z.
,
Li
,
K.
, and
Yao
,
Z.
,
2014
, “
Predictive Modeling and Uncertainty Quantification of Laser Shock Processing by Bayesian Gaussian Processes With Multiple Outputs
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041014
.
28.
Park
,
I.
, and
Grandhi
,
R. V.
,
2014
, “
A Bayesian Statistical Method for Quantifying Model Form Uncertainty and Two Model Combination Methods
,”
Reliab. Eng. Syst. Saf.
,
129
, pp.
46
56
29.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
30.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
,
New York
.
31.
Choi
,
S.-K.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2007
,
Reliability-Based Structural Design
,
Springer-Verlag
,
London, UK
.
32.
Luong
,
H.
, and
Hill
,
M. R.
,
2008
, “
The Effects of Laser Peening on High-Cycle Fatigue in 7085-T7651 Aluminum Alloy
,”
Mater. Sci. Eng.
,
477
(
1–2
), pp.
208
216
.
33.
Lesuer
,
D. R.
,
2000
, “
Experimental Investigations of Material Models for Ti-6A1-4V Titanium and 2024-T3 Aluminum
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. DOT/FAA/AR-00/25.
34.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
35.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
36.
Lampman
,
S. R.
,
and
Dimatteo
,
N. D.
, eds.,
1996
,
ASM Handbook: Volume 19: Fatigue and Fracture
,
ASM International
,
Materials Park, OH
, Sect. 6.
37.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
38.
Iman
,
R.
, and
Davenport
,
J.
,
1980
, “
Rank Correlation Plots for Use With Correlated Input Variables in Simulation Studies
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND80-1903.
39.
Helton
,
J.
, and
Davis
,
F.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
40.
Voothaluru
,
R.
, and
Liu
,
C. R.
,
2010
, “
Finite Element Analysis of Overlapping Impacts of Laser Shock Peening Within Annealed AISI 1053 Steel
,”
ASME
Paper No. MSEC2010-34164.
41.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div., ASCE
,
100
(
1
), pp.
111
121
.
42.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1981
, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Eng. Mech. Div., ASCE
,
107
(
6
), pp.
1227
1238
.
You do not currently have access to this content.