This paper studies the effect of various lamellar-type solid lubricants (graphite and hBN) that can be mixed into a lubricant to potentially improve the machinability of minimum quantity lubrication (MQL) machining. To examine this, the solid lubricants are classified into particles and platelets based on their aspect ratios as well as their respective sizes. In particular, the particles are classified into microparticles and nanoparticles based on their dimensions (average radius), while the platelets were classified, based on their average thickness, into two types: the “microplatelets” if the thickness is typically up to few tens of microns and the “nanoplatelets” if the thickness is well below a tenth of a micron (even down to few nanometers). Our previous work has shown that the mixture of an extremely small amount (about 0.1 wt. %) of the graphitic nanoplatelets and vegetable oil immensely enhanced the machinability of MQL machining. In this paper, many lubricants, each mixed with a particular variety of nano- or micro-platelets or one type of nanoparticles, were studied to reveal the effect of each solid lubricant on MQL machining. Prior to the MQL machining experiment, the tribological test was conducted to show that the nanoplatelets are overall more effective than the microplatelets and nanoparticles in minimizing wear despite of no significant difference in friction compared to pure vegetable oil. Consequently, the MQL ball-milling experiment was conducted with AISI 1045 steel yielding a similar trend. Surprisingly, the oil mixtures with the microplatelets increased flank wear, even compared to the pure oil lubricant when the tools with the smooth surface were used. Thus, the nanoscale thickness of these platelets is a critical requirement for the solid lubricants in enhancing the MQL machining process. However, maintaining the nanoscale thickness is not critical with the tools with the rough surfaces in enhancing the MQL process. Therefore, it is concluded that finding an optimum solid lubricant depends on not only the characteristics (material as well as morphology) of solid lubricants but also the characteristic of tool surface.

References

References
1.
Kajdas
,
C.
,
1992
, “
Industrial lubricants
,”
Chemistry and Technology of Lubricants
,
Springer
,
New York
, pp.
196
222
.
2.
Klocke
,
F.
, and
Eisenblatter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann. Manuf. Technol.
,
46
(
2
), pp.
510
526
.
3.
Khettabi
,
R.
,
Songmene
,
V.
,
Masounave
,
J.
, and
Zaghbani
,
I.
,
2008
, “
Understanding the Formation of Nano and Micro Particles During Metal Cutting
,”
Int. J. Signal Syst. Control Eng.
,
1
(
3
), pp.
203
210
.http://medwelljournals.com/abstract/?doi=ijssceapp.2008.203.210
4.
Khettabi
,
R.
,
Songmene
,
V.
, and
Masounave
,
J.
,
2010
, “
Effects of Speeds, Materials, and Tool Rake Angles on Metallic Particle Emission During Orthogonal Cutting
,”
J. Mater. Eng. Perform.
,
19
(
6
), pp.
767
775
.
5.
Shen
,
B.
,
Malshe
,
A. P.
,
Kalita
,
P.
, and
Shih
,
A. J.
,
2008
, “
Performance of Novel MoS2 Nanoparticles Based Grinding Fluids in Minimum Quantity Lubrication Grinding
,”
Trans. NAMRI/SME
,
36
, pp.
357
364
.
6.
Gaitonde
,
V. N.
,
Karnik
,
S. R.
, and
Davim
,
J. P.
,
2008
, “
Selection of Optimal MQL and Cutting Conditions For Enhancing Machinability in Turning Of Brass
,”
J. Mater. Process. Technol.
,
204
(
1–3
), pp.
459
464
.
7.
Srikant
,
R. R.
,
Rao
,
D. N.
,
Subrahmanyam
,
M. S.
, and
Krishna
,
P. V.
,
2014
, “
Applicability of Cutting Fluids With Nanoparticle Inclusion as Coolants in Machining
,”
Proc. Inst. Mech. Eng. Part J
,
228
(
7
), pp.
221
225
.
8.
Braga
,
D. U.
,
Diniz
,
A. E.
,
Miranda
,
G. W.
, and
Coppini
,
N. L.
,
2002
, “
Using a Minimum Quantity of Lubricant (MQL) and a Diamond Coated Tool in the Drilling of Aluminum–Silicon Alloys
,”
J. Mater. Process. Technol.
,
122
(
1
), pp.
127
138
.
9.
Brandao
,
L. C.
,
Coelho
,
R. T.
, and
Lauro
,
C. H.
,
2011
, “
Contribution to Dynamic Characteristics of the Cutting Temperature in the Drilling Process Considering One Dimension Heat Flow
,”
Appl. Therm. Eng.
,
31
(
17
), pp.
3806
3813
.
10.
Briksmeier
,
E.
,
Walter
,
A.
,
Janssen
,
R.
, and
Diersen
,
P.
,
1999
, “
Aspects of Cooling Lubrication Reduction in Machining Advanced Materials
,”
Proc. Inst. Mech. Eng., Part B
,
213
(
8
), pp.
769
778
.
11.
Varadarajan
,
A. S.
,
Philip
,
P. K.
, and
Ramamoorthy
,
B.
,
2002
, “
Investigations on Hard Turning With Minimal Cutting Fluid Application (HTMF) and Its Comparison With Dry and Wet Turning
,”
Int. J. Mach. Tools Manuf.
,
42
(
2
), pp.
193
200
.
12.
Gaitonde
,
V. N.
,
Karnik
,
S. R.
, and
Davim
,
J. P.
,
2008
, “
Selection of Optimal MQL and Cutting Conditions for Enhancing Machinability in Turning of Brass
,”
J. Mater. Process. Technol.
,
204
(
1
), pp.
459
464
.
13.
Wakabayashi
,
T.
,
Inasaki
,
I.
, and
Suda
,
S.
,
2006
, “
Tribological Action and Optimal Performance: Research Activities Regarding MQL Machining Fluids
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
59
85
.
14.
Sarhan
,
A. A. D.
,
Sayuti
,
M.
, and
Hamdi
,
M.
,
2012
, “
Reduction of Power and Lubricant Oil Consumption in Milling Process Using a New SiO2 Nanolubrication System
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
505
512
.
15.
Thepsonthi
,
T.
,
Hamdi
,
M.
, and
Mitsui
,
K.
,
2009
, “
Investigation Into Minimal-Cutting-Fluid Application in High-Speed Milling of Hardened Steel Using Carbide Mills
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
156
162
.
16.
Sultana
,
S.
,
Zaman
,
P. B.
, and
Dha
,
N. R.
,
2009
, “
Different Types of Cutting Fluid in MQL Machining of Alloy Steel by Coated Carbide Insert
,”
International Conference on Mechanical Engineering (ICME2009)
, pp.
26
28
.
17.
Singh
,
G.
,
Singh
,
S.
,
Singh
,
M.
, and
Kumar
,
A.
,
2013
, “
Experimental Investigations of Vegetable and Mineral Oil Performance During Machining of EN-31 Steel With Minimum Quantity Lubrication
,”
Int. J. Res. Eng. Technol.
,
2
(
6
), pp.
1030
1037
.
18.
Ozcelik
,
B.
,
Emel
,
K.
,
Cetin
,
M. H.
, and
Demirbas
,
E.
,
2011
, “
Experimental Investigations of Vegetable Based Cutting Fluids With Extreme Pressure During Turning of AISI 304L
,”
Tribol. Int.
,
44
(
12
), pp.
1864
1871
.
19.
Cetin
,
M. H.
,
Ozcelik
,
B.
,
Kuram
,
E.
, and
Demirbas
,
E.
,
2011
, “
Evaluation of Vegetable Based Cutting Fluids With Extreme Pressure and Cutting Parameters in Turning of AISI 304L by Taguchi Method
,”
J. Cleaner Prod.
,
19
(
17
), pp.
2049
2056
.
20.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
Effect of MQL on the Tool Life of Small Twist Drills in Deep-Hole Drilling
,”
Int. J. Mach. Tools Manuf.
,
46
(
1
), pp.
1
6
.
21.
Mao
,
C.
,
Tang
,
X.
,
Zou
,
H.
,
Huang
,
X.
, and
Zhou
,
Z.
,
2012
, “
Investigation of Grinding Characteristic Using Nano-Fluid Minimum Quantity Lubrication
,”
Int. J. Precis. Eng. Manuf.
,
13
(
10
), pp.
1745
1752
.
22.
Shen
,
B.
,
Shih
,
A. J.
, and
Tung
,
S. C.
,
2008
, “
Application of Nanofluids in Minimum Quantity Lubrication Grinding
,”
Tribol. Trans.
,
51
(
6
), pp.
730
737
.
23.
Park
,
K. H.
,
Ewald
,
S.
, and
Kwon
,
P.
,
2011
, “
Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling
,”
ASME J. Tribol.
,
133
(
3
), p.
031803
.
24.
Nguyen
,
T.
,
Do
,
I.
, and
Kwon
,
P.
,
2012
, “
A Tribological Study of Vegetable Oil Enhanced by Nano-Platelets and Implication in MQL Machining
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1077
1083
.
25.
Sadeghi
,
M. H.
,
Haddad
,
M. J.
,
Tawakoli
,
T.
, and
Emami
,
M.
,
2009
, “
Minimal Quantity Lubrication-MQL in Grinding of Ti–6Al–4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
44
(
5–6
), pp.
487
500
.
26.
Emami
,
M.
,
Sadeghi
,
M. H.
,
Sarhan
,
A. A. D.
, and
Hasani
,
F.
,
2014
, “
Investigating the Minimum Quantity Lubrication in Grinding of Al2O3 Engineering Ceramic
,”
J. Cleaner Prod.
,
66
, pp.
632
643
.
27.
Tai
,
B. L.
,
Dasch
,
J. M.
, and
Shih
,
A. J.
,
2011
, “
Evaluation and Comparison of Lubricant Properties in Minimum Quantity Lubrication Machining
,”
Mach. Sci. Technol.
,
15
(
4
), pp.
376
391
.
28.
Lee
,
P.-H.
,
Nam
,
T. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2010
, “
Environmentally-Friendly Nano-Fluid Minimum Quantity Lubrication (MQL) Meso-Scale Grinding Process Using Nano-Diamond Particles
,”
2010 International Conference on IEEE Manufacturing Automation (ICMA)
, pp.
44
49
.
29.
Ahmed
,
A.
,
Sarhan
,
D.
,
Sayuti
,
M.
, and
Hamdi
,
M.
,
2012
, “
Reduction of Power and Lubricant Oil Consumption in Milling Process Using a New SiO2 Nanolubrication System
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
505
512
.
30.
Oliveira
,
D. J.
,
Guermandi
,
L. G.
,
Bianchi
,
E. C.
,
Diniz
,
A. E.
,
Aguiar
,
P. R.
, and
Canarim
,
R. C.
,
2012
Improving Minimum Quantity Lubrication in CBN Grinding Using Compressed Air Wheel Cleaning
,”
J. Mater. Process. Technol.
,
212
(
12
), pp.
2559
2568
.
31.
Aoyama
,
T.
,
Kakinuma
,
Y.
,
Yamashita
,
M.
, and
Aoki
,
M.
,
2008
, “
Development of a New Lean Lubrication System for Near Dry Machining Process
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
125
128
.
32.
Nath
,
C.
,
Kapoor
,
S.
,
Srivastava
,
A.
, and
Iverson
,
J.
,
2014
, “
Study of Droplet Spray Behavior of an Atomization-Based Cutting Fluid Spray System for Machining Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021004
.
33.
Itoigawa
,
F.
,
Childs
,
T. H. C.
,
Nakamura
,
T.
, and
Belluco
,
W.
,
2006
, “
Effects and Mechanisms in Minimal Quantity Lubrication Machining of an Aluminum Alloy
,”
Wear
,
260
(
3
), pp.
339
344
.
34.
Donnet
,
C.
, and
Erdemir
,
A.
,
2004
, “
Solid Lubricant Coatings: Recent Developments and Future Trends
,”
Tribol. Lett.
,
17
(
3
), pp.
389
397
.
35.
Alberts
,
M.
,
Kalaitzidou
,
K.
, and
Melkote
,
S.
,
2009
, “
An Investigation of Graphite Nanoplatelets as Lubricant in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
966
970
.
36.
Zhu
,
Q.
,
Qiu
,
X.
, and
Ma
,
C.
,
1998
, “
The Oxidation Resistance Improvement of Matrix Graphite of Spherical Fuel Elements by Slip-Gelation Process
,”
J. Nucl. Mater.
,
254
(
2–3
), pp.
221
225
.
37.
Haubner
,
R.
,
Wilhelm
,
M.
,
Weissenbacher
,
R.
, and
Lux
,
B.
,
2002
, “
Boron Nitrides—Properties, Synthesis and Applications
,”
Chem. Mater. Sci. High Perform. Non-Oxide, Ceram. II Struct. Bonding
,
102
, pp.
1
45
.
38.
Mao
,
C.
,
Zou
,
H.
,
Huang
,
X.
,
Zhang
,
J.
, and
Zhou
,
Z.
,
2013
, “
The Influence of Spraying Parameters on Grinding Performance for Nanofluid Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
64
(
9
), pp.
1791
1799
.
39.
Yan
,
L.
,
Yuan
,
S.
, and
Liu
,
Q.
,
2012
, “
Influence of Minimum Quantity Lubrication Parameters on Tool Wear and Surface Roughness in Milling of Forged Steel
,”
Chin. J. Mech. Eng.
,
25
(
3
), pp.
419
429
.
40.
Lopez de Lacalle
,
L. N.
,
Angulo
,
C.
,
Lamikiz
,
A.
, and
Sanchez
,
J. A.
,
2006
, “
Experimental and Numerical Investigation of the Effect of Spray Cutting Fluids in High Speed Milling
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
11
15
.
41.
Liu
,
Z. Q.
,
Cai
,
X. J.
,
Chen
,
M.
, and
An
,
Q. L.
,
2011
, “
Investigation of Cutting Force and Temperature of End-Milling Ti–6Al–4V With Different Minimum Quantity Lubrication (MQL) Parameters
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
8
), pp.
1273
1279
.
42.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamada
,
K.
,
2006
, “
Effect of Oil Mist on Tool Temperature in Cutting
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
130
135
.
43.
Tawakoli
,
T.
,
Hadad
,
M. J.
, and
Sadeghi
,
M. H.
,
2010
, “
Influence of Oil Mist Parameters on Minimum Quantity Lubrication–MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
521
531
.
44.
Allam
,
I. M.
,
1991
, “
Solid Lubricants for Applications at Elevated Temperatures
,”
J. Mater. Sci.
,
26
(
15
), pp.
3977
3984
.
45.
Erdemir
,
A.
,
2001
, “
Solid Lubricants and Self-Lubricating Films
,”
Modern Tribology Handbook 2
,
CRC Press
,
Boca Raton, FL
, p.
787
.
46.
Winer
,
W. O.
,
1967
, “
Molybdenum Disulfide as a Lubricant: A Review of the Fundamental Knowledge
,”
Wear
,
10
(
6
), pp.
422
452
.
47.
Ramana
,
S. V.
,
Ramji
,
K.
, and
Satyanarayana
,
B.
,
2011
, “
Influence of Nano-Level Variation of Solid Lubricant Particle Size in the Machining of AISI 1040 Steel
,”
Int. J. Mater. Eng. Innov.
,
2
(
1
), pp.
16
29
.
48.
Kalita
,
P.
,
Malshe
,
A. P.
,
Kumarb
,
S. A.
,
Yoganath
,
V. G.
, and
Gurumurthy
,
T.
,
2012
, “
Study of Specific Energy and Friction Coefficient in Minimum Quantity Lubrication Grinding Using Oil-Based Nanolubricants
,”
J. Manuf. Process.
,
14
(
2
), pp.
160
166
.
49.
Krishna
,
P. V.
,
Srikant
,
R. R.
, and
Rao
,
D. N.
,
2010
, “
Experimental Investigation on the Performance of Nanoboric Acid Suspensions in SAE-40 and Coconut Oil During Turning of AISI 1040 Steel
,”
Int. J. Mach. Tools Manuf.
,
50
(
10
), pp.
911
916
.
50.
Nam
,
T. S.
,
Lee
,
P. H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tools Manuf.
,
51
(
7–8
), pp.
649
652
.
51.
Vasu
,
V.
, and
Reddy
,
G. P. K.
,
2011
, “
Effect of Minimum Quantity Lubrication With Al2O3 Nanoparticles on Surface Roughness, Tool Wear and Temperature Dissipation in Machining Inconel 600 Alloy
,”
Proc. Inst. Mech. Eng., Part N
,
225
(
1
), pp.
3
16
.
52.
Sun
,
J.
,
Wong
,
Y. S.
,
Rahman
,
M.
,
Wang
,
Z. G.
,
Neo
,
K. S.
,
Tan
,
C. H.
, and
Onozuka
,
H.
,
2006
, “
Effects of Coolant Supply Methods and Cutting Conditions on Tool Life in End Milling Titanium Alloy
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
355
370
.
53.
Yasir
,
A.
,
Che Hassan
,
C. H.
,
Jaharah
,
A. G.
,
Norhamidi
,
M.
,
Gusri
,
A. I.
, and
Zaid
,
A. Y.
,
2010
, “
Cutting Force Analysis When Milling Ti-6Al-4V Under Dry and Near Dry Conditions Using Coated Tungsten Carbides
,”
Adv. Mater. Res.
,
129–131
, pp.
993
998
.
54.
Kamata
,
Y.
, and
Obikawa
,
T.
,
2007
, “
High Speed MQL Finish-Turning of Inconel 718 With Different Coated Tools
,”
J. Mater. Process. Technol.
,
192
, pp.
281
286
.
55.
Shaji
,
S.
, and
Radhakrishnan
,
V.
,
2002
, “
An Investigation on Surface Grinding Using Graphite as Lubricant
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
733
740
.
56.
Reddy
,
N. S. K.
, and
Rao
,
P. V.
,
2006
, “
Experimental Investigation to Study the Effect of Solid Lubricants on Cutting Forces and Surface Quality in End Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
189
198
.
57.
Fukushima
,
H.
,
2003
, “
Graphite Nano-Reinforcements in Polymer Nanocomposites
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
58.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Fiction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
.
59.
Kimura
,
Y.
,
Wakabayashi
,
T.
,
Okada
,
K.
,
Wada
,
T.
, and
Nishikawa
,
H.
,
1999
, “
Boron Nitride as a Lubricant Additive
,”
Wear
,
232
(
2
), pp.
199
206
.
You do not currently have access to this content.