Interest in assessing the sustainability performance of manufacturing processes and systems during product design is increasing. Prior work has investigated approaches for quantifying and reducing impacts across the product life cycle. Energy consumption and carbon footprint are frequently adopted and investigated environmental performance metrics. However, challenges persist in concurrent consideration of environmental, economic, and social impacts resulting from manufacturing processes and supply chain networks. Companies are striving to manage their manufacturing networks to improve environmental and social performance, in addition to economic performance. In particular, social responsibility has gained visibility as a conduit to competitive advantage. Thus, a framework is presented for improving environmental and social performance through simultaneous consideration of manufacturing processes and supply chain activities. The framework builds upon the unit manufacturing process modeling method and is demonstrated for production of bicycle pedal components. For the case examined, it is found that unit manufacturing processes account for 63–97% of supply chain carbon footprint when air freight transport is not used. When air freight transport is used for heavier components, transportation-related energy consumption accounts for 78–90% of supply chain carbon footprint. Similarly, from a social responsibility perspective, transportation-related activities account for 73–99% of supply chain injuries/illnesses, and days away from work when air freight transport is used. Manufacturing activities dominate the impacts on worker health when air freight transport is not used, leading to 59–99% of supply chain injuries/illnesses, and days away from work. These results reiterate that simultaneous consideration of environmental and social impacts of manufacturing and supply chain activities is needed to inform decision making in sustainable product manufacturing.

References

References
1.
Brundtland
,
G. H.
,
1987
,
Our Common Future, World Commission on Environment and Development (WCED)
,
Oxford University Press
, Oxford, UK.
2.
Intergovernmental Panel on Climate Change (IPCC)
,
2007
,
Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC
,
Cambridge University Press
, New York.
3.
Hunter
,
J.
,
2009
, “
Estimating Sea-Level Extremes Under Conditions of Uncertain Sea-Level Rise
,”
Clim. Change
,
99
(
3–4
), pp.
331
350
.
4.
Elabras Veiga
,
L. B.
, and
Magrini
,
A.
,
2009
, “
Eco-Industrial Park Development in Rio de Janeiro, Brazil: A Tool for Sustainable Development
,”
J. Cleaner Prod.
,
17
(
7
), pp.
653
661
.
5.
Kremer
,
G. E.
,
Haapala
,
K.
,
Murat
,
A.
,
Chinnam
,
R. B.
,
Kim
,
K.
,
Monplaisir
,
L.
, and
Lei
,
T.
,
2016
, “
Directions for Instilling Economic and Environmental Sustainability Across Product Supply Chains
,”
J. Cleaner Prod.
,
112
(
Pt. 3
), pp.
2066
2078
.
6.
Hutchins
,
M. J.
,
Gierke
,
J. S.
, and
Sutherland
,
J. W.
,
2009
, “
Decision Making for Social Sustainability: A Life-Cycle Assessment Approach
,”
IEEE International Symposium on Technology and Society
, ISTAS'09, pp.
1
5
.
7.
Seuring
,
S.
,
2013
, “
A Review of Modeling Approaches for Sustainable Supply Chain Management
,”
Decis. Support Syst.
,
54
(
4
), pp.
1513
1520
.
8.
Fuisz-Kehrbach
,
S.-K.
,
2015
, “
A Three-Dimensional Framework to Explore Corporate Sustainability Activities in the Mining Industry: Current Status and Challenges Ahead
,”
Resour. Policy
,
46
(
Pt. 1
), pp.
101
115
.
9.
Wirth
,
H.
,
Kulczycka
,
J.
,
Hausner
,
J.
, and
Koński
,
M.
,
2016
, “
Corporate Social Responsibility: Communication About Social and Environmental Disclosure by Large and Small Copper Mining Companies
,”
Resour. Policy
,
49
, pp.
53
60
.
10.
Gunasekaran
,
A.
, and
Spalanzani
,
A.
,
2012
, “
Sustainability of Manufacturing and Services: Investigations for Research and Applications
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
35
47
.
11.
Jørgensen
,
A.
,
Bocq
,
A.
,
Nazarkina
,
L.
, and
Hauschild
,
M.
,
2007
, “
Methodologies for Social Life Cycle Assessment
,”
Int. J. Life Cycle Assess.
,
13
(
2
), pp.
96
103
.
12.
Parris
,
T. M.
, and
Kates
,
R. W.
,
2003
, “
Characterizing and Measuring Sustainable Development
,”
Annu. Rev. Environ. Resour.
,
28
(
1
), pp.
559
586
.
13.
Golini
,
R.
,
Longoni
,
A.
, and
Cagliano
,
R.
,
2014
, “
Developing Sustainability in Global Manufacturing Networks: The Role of Site Competence on Sustainability Performance
,”
Int. J. Prod. Econ.
,
147
(
Pt. B
), pp.
448
459
.
14.
Yawar
,
S. A.
, and
Seuring
,
S.
, “
Management of Social Issues in Supply Chains: A Literature Review Exploring Social Issues, Actions and Performance Outcomes
,”
J. Bus. Ethics
, epub, pp. 1–23.
15.
Hutchins
,
M. J.
, and
Sutherland
,
J. W.
,
2008
, “
An Exploration of Measures of Social Sustainability and Their Application to Supply Chain Decisions
,”
J. Cleaner Prod.
,
16
(
15
), pp.
1688
1698
.
16.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
A Unit Process Model Based Methodology to Assist Product Sustainability Assessment During Design for Manufacturing
,”
J. Cleaner Prod.
,
108
(
Pt. A
), pp.
54
64
.
17.
Wilhelm
,
M.
,
Hutchins
,
M.
,
Mars
,
C.
, and
Benoit-Norris
,
C.
,
2015
, “
An Overview of Social Impacts and Their Corresponding Improvement Implications: A Mobile Phone Case Study
,”
J. Cleaner Prod.
,
102
, pp.
302
315
.
18.
Zhang
,
H.
, and
Haapala
,
K. R.
,
2015
, “
Integrating Sustainable Manufacturing Assessment Into Decision Making for a Production Work Cell
,”
J. Cleaner Prod.
,
105
, pp.
52
63
.
19.
Székely
,
F.
, and
Knirsch
,
M.
,
2005
, “
Responsible Leadership and Corporate Social Responsibility: Metrics for Sustainable Performance
,”
Eur. Manage. J.
,
23
(
6
), pp.
628
647
.
20.
Ma
,
J.
, and
Okudan Kremer
,
G. E.
,
2015
, “
A Fuzzy Logic-Based Approach to Determine Product Component End-of-Life Option From the Views of Sustainability and Designer's Perception
,”
J. Cleaner Prod.
,
108
(
Pt. A
), pp.
289
300
.
21.
Chen
,
D.
,
Heyer
,
S.
,
Ibbotson
,
S.
,
Salonitis
,
K.
,
Steingrímsson
,
J. G.
, and
Thiede
,
S.
,
2015
, “
Direct Digital Manufacturing: Definition, Evolution, and Sustainability Implications
,”
J. Cleaner Prod.
,
107
, pp.
615
625
.
22.
Sancha
,
C.
,
Gimenez
,
C.
, and
Sierra
,
V.
,
2016
, “
Achieving a Socially Responsible Supply Chain Through Assessment and Collaboration
,”
J. Cleaner Prod.
,
112
(
Pt. 3
), pp.
1934
1947
.
23.
U.S. EPA,
2011
, “
How Clean Is the Electricity I Use?—Power Profiler | Clean Energy | U.S. EPA
,” U.S. Environmental Protection Agency, Washington, DC, last accessed Feb. 8, 2015, http://www.epa.gov/cleanenergy/energy-and-you/how-clean.html
24.
Sutherland
,
J. W.
, and
Gunter
,
K. L.
,
2001
, “
Environmental Attributes of Manufacturing Processes
,”
Handbook of Environmentally Conscious Manufacturing
,
Springer
, Berlin, pp.
293
316
.
25.
Jeswiet
,
J.
, and
Hauschild
,
M.
,
2005
, “
EcoDesign and Future Environmental Impacts
,”
Mater. Des.
,
26
(
7
), pp.
629
634
.
26.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
27.
Zhang
,
W.
,
2011
,
Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations
,
CRC Press
, Boca Raton, FL.
28.
Sutherland
,
J. W.
,
Gunter
,
K. L.
,
Haapala
,
K. R.
,
Khadke
,
K.
,
Skerlos
,
S. J.
,
Zimmerman
,
J. B.
,
Olson
,
W. W.
, and
Sadasivuni
,
R.
,
2003
, “
Environmentally Benign Manufacturing: Status and Vision for the Future
,”
31st North American Manufacturing Research Conference
, Hamilton, ON, Canada, May 20–23, Vol.
31
, pp.
345
352
.
29.
Duflou
,
J. R.
,
Sutherland
,
J. W.
,
Dornfeld
,
D.
,
Herrmann
,
C.
,
Jeswiet
,
J.
,
Kara
,
S.
,
Hauschild
,
M.
, and
Kellens
,
K.
,
2012
, “
Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach
,”
CIRP Ann.-Manuf. Technol.
,
61
(
2
), pp.
587
609
.
30.
Gutowski
,
T. G.
,
Murphy
,
C. F.
,
Allen
,
D. T.
,
Bauer
,
D. J.
,
Bras
,
B.
,
Piwonka
,
T. S.
,
Sheng
,
P. S.
,
Sutherland
,
J. W.
,
Thurston
,
D. L.
, and
Wolff
,
E. E.
,
2001
, “
Environmentally Benign Manufacturing
,” World Technology (
WTEC
) Division, International Technology Research Institute, Baltimore, MD, epub.
31.
Fiksel
,
J.
,
1993
, “
Design for Environment: An Integrated Systems Approach
,”
IEEE International Symposium on Electronics and the Environment
, Arlington, VA, May 10–12, pp.
126
131
.
32.
Chiu
,
M.-C.
,
Alsaffar
,
A. J.
,
Okudan
,
G. E.
, and
Haapala
,
K. R.
,
2010
, “
Reducing Supply Chain Costs and Carbon Footprint During Product Design
,”
IEEE International Symposium on Sustainable Systems and Technology (ISSST)
, Washington, DC, May 17–19, pp.
1
6
.
33.
Fullan
,
M.
,
2005
,
Leadership & Sustainability: System Thinkers in Action
,
Corwin Press
,
Thousand Oaks, CA
.
34.
Hargreaves
,
A.
, and
Fink
,
D.
,
2005
,
Sustainable Leadership
, Vol.
6
,
Jossey-Bass
,
San Francisco, CA
.
35.
U.S. EPA,
2007
, “
EPA's Emissions & Generation Resource Integrated Database (eGRID): Power Profiler eGRID Subregion and GHG Emissions Finder Tool
,” U.S. Environmental Protection Agency, Washington, DC.
36.
Hertwich
,
E. G.
,
Hammitt
,
J. K.
, and
Pease
,
W. S.
,
2000
, “
A Theoretical Foundation for Life‐Cycle Assessment
,”
J. Ind. Ecol.
,
4
(
1
), pp.
13
28
.
37.
Corbett
,
C. J.
, and
Kirsch
,
D. A.
,
2001
, “
International Dispersion of ISO 14000 Certifications
,”
Prod. Oper. Manage.
,
10
(
3
), pp.
327
342
.
38.
Giachetti
,
R. E.
,
1998
, “
A Decision Support System for Material and Manufacturing Process Selection
,”
J. Intell. Manuf.
,
9
(
3
), pp.
265
276
.
39.
Lin
,
X.
, and
Polenske
,
K. R.
,
1998
, “
Input–Output Modeling of Production Processes for Business Management
,”
Struct. Change Econ. Dyn.
,
9
(
2
), pp.
205
226
.
40.
Hernandez-Matias
,
J. C.
,
Vizan
,
A.
,
Hidalgo
,
A.
, and
Rios
,
J.
,
2006
, “
Evaluation of Techniques for Manufacturing Process Analysis
,”
J. Intell. Manuf.
,
17
(
5
), pp.
571
583
.
41.
Rajemi
,
M. F.
,
Mativenga
,
P. T.
, and
Aramcharoen
,
A.
,
2010
, “
Sustainable Machining: Selection of Optimum Turning Conditions Based on Minimum Energy Considerations
,”
J. Cleaner Prod.
,
18
(
10
), pp.
1059
1065
.
42.
ISO
,
2014
, “
Machine Tools—Environmental Evaluation of Machine Tools—Part 1: Design Methodology for Energy-Efficient Machine Tools
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 14955-1:2014.
43.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “
Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use
,”
Glocalized Solutions for Sustainability in Manufacturing
,
J.
Hesselbach
, and
Herrmann
,
C.
, eds.,
Springer
,
Berlin
, pp.
263
267
.
44.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
, Leuven, Belgium, May 31–June 2, Vol.
5
, pp.
560
564
.
45.
Haapala
,
K. R.
,
Khadke
,
K. N.
, and
Sutherland
,
J. W.
,
2004
, “
Predicting Manufacturing Waste and Energy for Sustainable Product Development Via WE-Fab Software
,”
Global Conference on Sustainable Product Development and Life Cycle Engineering
, Berlin, Germany, Sept. 29–Oct. 1, pp.
243–
250
.
46.
Linke
,
B.
,
Das
,
J.
,
Lam
,
M.
, and
Ly
,
C.
,
2014
, “
Sustainability Indicators for Finishing Operations Based on Process Performance and Part Quality
,”
Procedia CIRP
,
14
, pp.
564
569
.
47.
Madan
,
J.
,
Mani
,
M.
,
Lee
,
J. H.
, and
Lyons
,
K. W.
,
2015
, “
Energy Performance Evaluation and Improvement of Unit-Manufacturing Processes: Injection Molding Case Study
,”
J. Cleaner Prod.
,
105
, pp.
157
170
.
48.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 1: Methodology Description
,”
Int. J. Life Cycle Assess.
,
17
(
1
), pp.
69
78
.
49.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
.
50.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2009
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,”
ASME
Paper No. MSEC2009-84065.
51.
Branker
,
K.
,
Jeswiet
,
J.
, and
Kim
,
I. Y.
,
2011
, “
Greenhouse Gases Emitted in Manufacturing a Product—A New Economic Model
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
53
56
.
52.
Nava
,
P.
,
2009
, “
Minimizing Carbon Emissions in Metal Forming
,” Master's thesis, Queens University, Kingston, ON, Canada.
53.
Jeswiet
,
J.
, and
Nava
,
P.
,
2009
, “
Applying CES to Assembly and Comparing Carbon Footprints
,”
Int. J. Sustainable Eng.
,
2
(
4
), pp.
232
240
.
54.
Laurent
,
A.
,
Olsen
,
S. I.
, and
Hauschild
,
M. Z.
,
2010
, “
Carbon Footprint as Environmental Performance Indicator for the Manufacturing Industry
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
37
40
.
55.
Fang
,
K.
,
Uhan
,
N.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2011
, “
A New Approach to Scheduling in Manufacturing for Power Consumption and Carbon Footprint Reduction
,”
J. Manuf. Syst.
,
30
(
4
), pp.
234
240
.
56.
Dietmair
,
A.
, and
Verl
,
A.
,
2008
, “
Energy Consumption Modeling and Optimization for Production Machines
,”
IEEE International Conference on Sustainable Energy Technologies
, ICSET 2008, pp.
574
579
.
57.
Sun
,
Z.
, and
Li
,
L.
,
2014
, “
Potential Capability Estimation for Real Time Electricity Demand Response of Sustainable Manufacturing Systems Using Markov Decision Process
,”
J. Cleaner Prod.
,
65
, pp.
184
193
.
58.
Sun
,
Z.
,
Biller
,
S.
,
Gu
,
F.
, and
Li
,
L.
,
2011
, “
Energy Consumption Reduction for Sustainable Manufacturing Systems Considering Machines With Multiple-Power States
,”
ASME
Paper No. MSEC2011-50069.
59.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
591
.
60.
Seuring
,
S.
, and
Müller
,
M.
,
2008
, “
From a Literature Review to a Conceptual Framework for Sustainable Supply Chain Management
,”
J. Cleaner Prod.
,
16
(
15
), pp.
1699
1710
.
61.
Cholette
,
S.
, and
Venkat
,
K.
,
2009
, “
The Energy and Carbon Intensity of Wine Distribution: A Study of Logistical Options for Delivering Wine to Consumers
,”
J. Cleaner Prod.
,
17
(
16
), pp.
1401
1413
.
62.
Sundarakani
,
B.
,
De Souza
,
R.
,
Goh
,
M.
,
Wagner
,
S. M.
, and
Manikandan
,
S.
,
2010
, “
Modeling Carbon Footprints Across the Supply Chain
,”
Int. J. Prod. Econ.
,
128
(
1
), pp.
43
50
.
63.
Saunders
,
C.
, and
Barber
,
A.
,
2007
,
Comparative Energy and Greenhouse Gas Emissions of New Zealand's and the UK's Dairy Industry
,
Agribusiness and Economics Research Unit, Lincoln University
,
Lincoln, New Zealand
, Report No. 297.
64.
Ibbotson
,
S.
, and
Kara
,
S.
,
2011
, “
Carbon footprint Analysis of Products Cradle-to-Gate and Manufacturing Supply Chains
,”
7th Australian Conference on Life Cycle Assessment
, East Melbourne, Australia, Mar. 9–10, pp.
1
10
.
65.
Herrmann
,
C.
,
Kara
,
S.
,
Thiede
,
S.
, and
Luger
,
T.
,
2010
, “
Energy Efficiency in Manufacturing—Perspectives From Australia and Europe
,”
CIRP International Conference on Life Cycle Engineering
, pp.
23
28
.
66.
Arnette
,
A. N.
,
Brewer
,
B. L.
, and
Choal
,
T.
,
2014
, “
Design for Sustainability (DFS): The Intersection of Supply Chain and Environment
,”
J. Cleaner Prod.
,
83
, pp.
374
390
.
67.
Bevilacqua
,
M.
,
Ciarapica
,
F. E.
,
Giacchetta
,
G.
, and
Marchetti
,
B.
,
2011
, “
A Carbon Footprint Analysis in the Textile Supply Chain
,”
Int. J. Sustainable Eng.
,
4
(
1
), pp.
24
36
.
68.
Govindan
,
K.
,
Azevedo
,
S. G.
,
Carvalho
,
H.
, and
Cruz-Machado
,
V.
,
2014
, “
Impact of Supply Chain Management Practices on Sustainability
,”
J. Cleaner Prod.
,
85
, pp.
212
225
.
69.
Ahi
,
P.
, and
Searcy
,
C.
,
2015
, “
Assessing Sustainability in the Supply Chain: A Triple Bottom Line Approach
,”
Appl. Math. Modell.
,
39
(
10–11
), pp.
2882
2896
.
70.
Garcia
,
D. J.
, and
You
,
F.
,
2015
, “
Supply Chain Design and Optimization: Challenges and Opportunities
,”
Comput. Chem. Eng.
,
81
, pp.
153
170
.
71.
Sheng
,
P.
, and
Worhach
,
P.
,
1998
, “
A Process Chaining Approach Toward Product Design for Environment
,”
J. Ind. Ecol.
,
1
(
4
), pp.
35
55
.
72.
Reap
,
J.
,
Román
,
F.
,
Guldberg
,
T.
, and
Bras
,
B.
,
2006
, “
Integrated Ecosystem Landscape and Industrial Modeling for Strategic Environmentally Conscious Process Technology Selection
,”
13th CIRP International Conference on Life Cycle Engineering
, Leuven, Belgium, May 31–June 2, pp.
213
218
.
73.
De Benedetto
,
L.
, and
Klemeš
,
J.
,
2009
, “
The Environmental Performance Strategy Map: An Integrated LCA Approach to Support the Strategic Decision-Making Process
,”
J. Cleaner Prod.
,
17
(
10
), pp.
900
906
.
74.
Bright
,
R. M.
,
Cherubini
,
F.
, and
Strømman
,
A. H.
,
2011
, “
Climate Impacts of Bioenergy: Inclusion of Carbon Cycle and Albedo Dynamics in Life Cycle Impact Assessment
,”
Environ. Impact Assess. Rev.
,
37
, pp.
2
11
.
75.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
76.
Blom
,
M.
, and
Solmar
,
C.
,
2009
, “
How to Socially Assess Biofuels: Case Study of the UNEP/SETAC Code of Practice for Social-Economical LCA
,” Master's thesis, Luleå University of Technology, Luleå, Sweden.
77.
Dreyer
,
L. C.
,
Hauschild
,
M. Z.
, and
Schierbeck
,
J.
,
2010
, “
Characterisation of Social Impacts in LCA: Part 1: Development of Indicators for Labour Rights
,”
Int. J. Life Cycle Assess.
,
15
(
3
), pp.
247
259
.
78.
BLS
,
2015
, “
Bureau of Labor Statistics
,” United States Department of Labor, Washington, DC, last accessed Dec. 10, 2015, http://www.bls.gov/
79.
U.S. EIA,
2011
, “
Energy Perspectives, Total Energy—Energy Information Administration
,” U.S. Energy Information Administration, Washington, DC, last accessed Feb. 8, 2015, http://www.eia.gov/totalenergy/data/annual/perspectives.cfm
80.
U.S. EIA,
2004
, “
Greenhouse Gases, Climate Change, and Energy
,” U.S. Energy Information Administration, Washington, DC, last accessed Feb. 8, 2012, http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html
81.
U.S. NASA,
2015
, “
Climate Change: Vital Signs of the Planet: Causes
,” NASA, Washington, DC, Last accessed Feb. 8, 2015, http://climate.nasa.gov/causes/
82.
Wiedmann
,
T.
, and
Minx
,
J.
,
2008
, “
A Definition of ‘Carbon Footprint’
,”
Ecological Economics Research Trends
,
Nova Science Publishers
,
Hauppauge, NY
, pp.
1
11
.
83.
Wiedmann
,
T.
, and
Minx
,
J.
,
2007
, “
A Definition of ‘Carbon Footprint’
,”
Ecological Economics Research Trends
, Vol.
1
,
Nova Science Publishers
,
Hauppauge, NY
, pp.
1
11
.
84.
Boguski
,
T. K.
,
2010
, “
Life Cycle Carbon Footprint of the National Geographic Magazine
,”
Int. J. Life Cycle Assess.
,
15
(
7
), pp.
635
643
.
85.
Joyce
,
T.
,
Okrasinski
,
T. A.
, and
Schaeffer
,
W.
,
2010
, “
Estimating the Carbon Footprint of Telecommunications Products: A Heuristic Approach
,”
ASME J. Mech. Des.
,
132
(
9
), p.
094502
.
86.
U.S. National Research Council
,
1995
,
Unit Manufacturing Processes: Issues and Opportunities in Research
,
National Academy of Sciences
,
Washington, DC
.
87.
Kondoh
,
K.
, and
Aizawa
,
T.
,
2003
, “
Environmentally Benign Fabricating Process of Magnesium Alloy by Cyclical Plastic Working in Solid-State
,”
Mater. Trans.
,
44
(
7
), pp.
1276
1283
.
88.
Schifo
,
J. F.
, and
Radia
,
J. T.
,
2004
,
Theoretical/Best Practice Energy Use in Metalcasting Operations
, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Washington, DC.
89.
Ghany
,
K. A.
, and
Newishy
,
M.
,
2005
, “
Cutting of 1.2 mm Think Austenitic Stainless Steel Sheet Using Pulsed and CW Nd:YAG Laser
,”
J. Mater. Process. Technol.
,
168
(
3
), pp.
438
447
.
90.
Kordonowy
,
D. N.
,
2002
, “
A Power Assessment of Machining Tools
,” B.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.
91.
Santos
,
J. P.
,
Oliveira
,
M.
,
Almeida
,
F. G.
,
Pereira
,
J. P.
, and
Reis
,
A.
,
2011
, “
Improving the Environmental Performance of Machine-Tools: Influence of Technology and Throughput on the Electrical Energy Consumption of a Press-Brake
,”
J. Cleaner Prod.
,
19
(
4
), pp.
356
364
.
92.
Quiza Sardiñas
,
R.
,
Rivas Santana
,
M.
, and
Alfonso Brindis
,
E.
,
2006
, “
Genetic Algorithm-Based Multi-Objective Optimization of Cutting Parameters in Turning Processes
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
127
133
.
93.
Suda
,
S.
,
Yokota
,
H.
,
Inasaki
,
I.
, and
Wakabayashi
,
T.
,
2002
, “
A Synthetic Ester as an Optimal Cutting Fluid for Minimal Quantity Lubrication Machining
,”
CIRP Ann.-Manuf. Technol.
,
51
(
1
), pp.
95
98
.
94.
Kalpakjian
,
S.
,
2010
,
Manufacturing Engineering and Technology
,
Prentice Hall
,
New York, NY
.
95.
Boustead
,
I.
, and
Hancock
,
G. F.
,
1979
,
Handbook of Industrial Energy Analysis
,
Halsted Press
,
Chichester, UK
.
96.
Alsaffar
,
A.
,
2012
, “
Process-Based Modeling for Cradle-to-Gate Energy and Carbon Footprint Reduction in Product Design
,” M.S. thesis, Oregon State University, Corvallis, OR.
97.
AK Steel,
2013
, “
316/316L Stainless Steel
,” AK Steel Corporation, West Chester, OH.
98.
Lange
,
K.
,
1985
,
Handbook of Metal Forming
,
McGraw-Hill
, New York.
99.
Kutz
,
M.
,
2008
,
Environmentally Conscious Transportation
,
Wiley, New York
.
100.
U.S. EPA,
2009
, “
eGRID2012 Version 1.0 Year 2009 Summary Tables
,” U.S. Environmental Protection Agency, Washington, DC.
101.
U.S. EIA,
2010
, “
International Electricity Emission Factors by Country
,” U.S. Energy Information Administration, Washington, DC.
102.
McKinnon
,
A. C.
,
2003
, “
Logistics and the Environment
,”
Handbook of Transport and the Environment
, Vol.
4
,
D. A.
Hensher
, and
K. J.
Button
, eds.,
Elsevier
,
Oxford, UK
, pp.
665
685
.
103.
Google, 2016, “
Google Maps
,” Google, Mountain View, CA, https://www.google.com/maps
104.
NASA
,
2015
, “
NASA–NSSDCA: Terrestrial Planet Mileage Calculator
,” NASA, Washington, DC, last accessed Jan. 16, 2016, http://nssdc.gsfc.nasa.gov/special/
105.
Stubbles
,
J.
,
2000
,
Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities
, Energetics, Inc. and U.S. Department of Energy Office of Industrial Technologies, Washington, DC.
106.
Price
,
L.
,
Sinton
,
J.
,
Worrell
,
E.
,
Phylipsen
,
D.
,
Xiulian
,
H.
, and
Ji
,
L.
,
2002
, “
Energy Use and Carbon Dioxide Emissions From Steel Production in China
,”
Energy
,
27
(
5
), pp.
429
446
.
You do not currently have access to this content.