The emergence of additive manufacturing (AM) has potential for dramatic changes in labor productivity and economic welfare. With the growth of AM, understanding of the sustainability performance of relevant technologies is required. Toward that goal, an environmental impact assessment (EIA) approach is undertaken to evaluate an AM process. A novel fast mask image projection stereolithography (MIP-SL) process is investigated for the production of six functional test parts. The materials, energy, and wastes are documented for parts fabricated using this process. The EIA is completed for human health, ecosystem diversity, and resource costs using the ReCiPe 2008 impact assessment method. It is noted that process energy, in the form of electricity, is the key contributor for all three damage types. The results are used to depict the underlying relationship between energy consumed and the environmental impact of the process. Thus, to facilitate prediction of process energy utilization, a mathematical model relating shape complexity and dimensional size of the part with respect to part build time and washing time is developed. The effectiveness of this model is validated using data from real-time process energy monitoring. This work quantifies the elemental influence of design features on AM process energy consumption and environmental impacts. While focused on the environmental performance of the fast MIP-SL process, the developed approach can be extended to evaluate other AM processes and can encompass a triple bottom line analysis approach for sustainable design by predicting environmental, economic, and social performance of products.

References

References
1.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
2.
Morrow
,
W. R.
,
Qi
,
H.
,
Kim
,
I.
,
Mazumder
,
J.
, and
Skerlos
,
S. J.
,
2007
, “
Environmental Aspects of Laser-based and Conventional Tool and Die Manufacturing
,”
J. Cleaner Prod.
,
15
(
10
), pp.
932
943
.
3.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
Boston, MA
.
4.
Sreenivasan
,
R.
,
Goel
,
A.
, and
Bourell
,
D. L.
,
2010
, “
Sustainability Issues in Laser-Based Additive Manufacturing
,”
Phys. Procedia
,
5
(Pt. A), pp.
81
90
.
5.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” Advanced Manufacturing Center, Laboratory for Freeform Fabrication,
The University of Texas at Austin
.
6.
Reeves
,
P.
,
2012
, “
Additive Manufacturing and Sustainable Production for the 21st Century
,” Econolyst: The 3D Printing & Additive Manufacturing People, White Paper.
7.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
8.
Rua
,
Y.
,
Muren
,
R.
, and
Reckinger
,
S.
,
2015
, “
Limitations of Additive Manufacturing on Microfluidic Heat Exchanger Components
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034504
.
9.
Faludi
,
J.
,
Bayley
,
C.
,
Bhogal
,
S.
, and
Iribarne
,
M.
,
2015
, “
Comparing Environmental Impacts of Additive Manufacturing versus Traditional Machining Via Life-Cycle Assessment
,”
Rapid Prototyping J.
,
21
(
1
), pp.
14
33
.
10.
Le Bourhis
,
F.
,
Kerbrat
,
O.
,
Dembinski
,
L.
,
Hascoet
,
J.-Y.
, and
Mognol
,
P.
,
2014
, “
Predictive Model for Environmental Assessment in Additive Manufacturing Process
,”
Procedia CIRP
,
15
, pp.
26
31
.
11.
Luo
,
Y.
,
Ji
,
Z.
,
Leu
,
M. C.
, and
Caudill
,
R.
,
1999
, “
Environmental Performance Analysis of Solid Freedom Fabrication Processes
,”
IEEE International Symposium on Electronics and the Environment, ISEE-1999
, pp.
1
6
.
12.
Baumers
,
M.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Energy Inputs to Additive Manufacturing: Does Capacity Utilization Matter?
,” Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, pp.
30
40
.
13.
Carson
,
R. L.
,
Lear
,
L. J.
, and
Wilson
,
E. O.
,
2002
,
Silent Spring
,
Houghton Mifflin
,
Boston, MA
.
14.
Sutherland
,
J. W.
, and
Gunter
,
K. L.
,
2001
, “
Chapter 13. Environmental Attributes of Manufacturing Processes
,”
Handbook of Environmentally Conscious Manufacturing
,
1st, ed.
,
C. N.
Madu
, ed.,
Kluwer Academic Publishers
, Boston, MA, pp.
293
316
.
15.
Brundtland
,
G. H.
,
1987
,
Our Common Future, World Commission on Environment and Development (WCED)
, Oxford University Press, New York.
16.
United Nations General Assembly Resolation 60/1
, “
2005 World Summit Outcome
,” A/RES/60/1 (October 24, 2005), Last accessed June 17, 2016, undocs.org/A/RES/60/1.
17.
Mihelcic
,
J. R.
,
Crittenden
,
J. C.
,
Small
,
M. J.
,
Shonnard
,
D. R.
,
Hokanson
,
D. R.
,
Zhang
,
Q.
,
Chen
,
H.
,
Sorby
,
S. A.
,
James
,
V. U.
,
Sutherland
,
J. W.
, and
Schnoor
,
J. L.
,
2003
, “
Sustainability Science and Engineering: The Emergence of a New Metadiscipline
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5314
5324
.
18.
U.S. Department of Commerce
, “
Promoting Competitiveness: Partnerships and Progress of the Office of Manufacturing and Services
.”
International Trade Administration
,
Washington, DC
, November 2008.
19.
Huesemann
,
M. H.
,
2003
, “
The Limits of Technological Solutions to Sustainable Development
,”
Clean Technol. Environ. Policy
,
5
(
1
), pp.
21
34
.
20.
F42 Committee
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” ASTM International, West Conshohocken, PA, No. F2792–12a.
21.
Wong
,
V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p.
e208760
.
22.
Geraedts
,
J.
,
Doubrovski
,
E.
,
Verlinden
,
J.
, and
Stellingwerff
,
M.
,
2012
, “
Three Views on Additive Manufacturing: Business, Research and Education
,”
9th International Symposium on Tools and Methods of Competitive Engineering
, Karlsruhe, Germany, May 7–11,
I.
Horváth
,
A.
Albers
,
M.
Behrendt
, and
Z.
Rusák
, eds.,
Delft University of Technology, Delft, The Netherlands
, pp.
1
15
.
23.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5
), pp.
1191
1203
.
24.
van Nes
,
N.
, and
Cramer
,
J.
,
2005
, “
Influencing Product Lifetime Through Product Design
,”
Bus. Strategy Environ.
,
14
(
5
), pp.
286
299
.
25.
Diegel
,
O.
,
Singamneni
,
S.
,
Reay
,
S.
, and
Withell
,
A.
,
2010
, “
Tools for Sustainable Product Design: Additive Manufacturing
,”
J. Sustainable Dev.
,
3
(
3
), pp.
68
75
.
26.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
27.
Vincent
,
J.
,
2006
, “
Emotional Attachment and Mobile Phones
,”
Knowl. Technol. Policy
,
19
(
1
), pp.
39
44
.
28.
Drizo
,
A.
, and
Pegna
,
J.
,
2006
, “
Environmental Impacts of Rapid Prototyping: An Overview of Research to Date
,”
Rapid Prototyping J.
,
12
(
2
), pp.
64
71
.
29.
PRé Sustainability
,
1995
, “
The Eco-indicator 95
,” PRé Consultants, Amersfoort, The Netherlands, NOH 9523.
30.
Beltoft
,
V.
, and
Nielson
,
E.
,
2003
, “
Evaluation of Health Hazards by Exposure to Propylene Carbonate and Estimation of a Limit Value in Air
,”
Safety and Heath Topics: NIOSH/OSHA/DOE Health Guidelines
,
The National Institute for Occupational Safety and Health
,
Atlanta, GA
.
31.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing—Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
9
), pp.
1417
1427
.
32.
Hague
,
R.
,
Mansour
,
S.
, and
Saleh
,
N.
,
2004
, “
Material and Design Considerations for Rapid Manufacturing
,”
Int. J. Prod. Res.
,
42
(
22
), pp.
4691
4708
.
33.
Kellens
,
K.
,
Dewulf
,
W.
,
Deprez
,
W.
,
Yasa
,
E.
, and
Duflou
,
J.
,
2010
, “
Environmental Analysis of SLM and SLS Manufacturing Processes
,”
LCE2010 Conference
, Hefei, China, pp.
423
428
.
34.
Baumers
,
M.
,
Tuck
,
C.
,
Hague
,
R.
,
Ashcroft
,
I.
, and
Wildman
,
R.
,
2010
, “
A Comparative Study of Metallic Additive Manufacturing Power Consumption
,”
Solid Freeform Fabrication Symposium
, University of Texas, Austin, TX, pp.
278
288
.
35.
Wohlers
,
T.
, and
Caffrey
,
T.
,
2013
, “
Additive Manufacturing: Going Mainstream
,”
Manuf. Eng.
,
151
(
6
), pp.
67
73
.
36.
McNulty
,
C. M.
,
Arnas
,
N.
, and
Campbell
,
T. A.
,
2012
, “
DH-073: Toward the Printed World: Additive Manufacturing and Implications for National Security
,” DTIC Document, Defense Technical Information Center, Ft. Belvoir, VA.
37.
Meteyer
,
S.
,
Xu
,
X.
,
Perry
,
N.
, and
Zhao
,
Y. F.
,
2014
, “
Energy and Material Flow Analysis of Binder-Jetting Additive Manufacturing Processes
,”
Procedia CIRP
,
15
, pp.
19
25
.
38.
Kellens
,
K.
,
Yasa
,
E.
,
Renaldi
,
R.
,
Dewulf
,
W.
,
Kruth
,
J.-P.
, and
Duflou
,
J.
,
2011
, “
Energy and Resource Efficiency of SLS/SLM Processes
,”
Solid Freeform Fabrication Symposium
, University of Texas, Austin, TX, pp.
1
16
.
39.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2013
, “
Impact and Influence Factors of Additive Manufacturing on Product Lifecycle Costs
,”
Solid Freeform Fabrication Symposium
, University of Texas, Austin, TX, pp. 998–1009.
40.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
41.
Le Bourhis
,
F.
,
Kerbrat
,
O.
,
Hascoet
,
J.-Y.
, and
Mognol
,
P.
,
2013
, “
Sustainable Manufacturing: Evaluation and Modeling of Environmental Impacts in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1927
1939
.
42.
Verma
,
A.
, and
Rai
,
R.
,
2013
, “
Energy Efficient Modeling and Optimization of Additive Manufacturing Processes
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
231
241
.
43.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
44.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Rapid Manufacturing in Minutes: The Development of a Mask Projection Stereolithography Process for High-Speed Fabrication
,”
ASME
Paper No. MSEC2012-7232.
45.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
.
46.
Hasan
,
S.
, and
Rennie
,
A. E. W.
,
2008
, “
The Application of Rapid Manufacturing Technologies in the Spare Parts Industry
,”
19th Annual International Solid Freeform Fabrication (SFF) Symposium
, Austin, TX, Aug. 4–8, pp.
584
590
.
47.
Envisiontec
,
2012
, “
Material Safety Data Sheet (MSDS): Photopolymer R05
,” Envisiontec, Dearborn, MI.
48.
Envisiontec
,
2010
, “
Material Safety Data Sheet (MSDS): Photopolymer Industrial Shell SI 300, SI 500
,” Envisiontec, Dearborn, MI.
49.
Fluke Corporation
, “
Fluke 430 Series II Three-Phase Power Quality and Energy Analyzers Technical Data Sheet
,” Fluke Corporation, Everett, WA.
50.
Fluke Corporation
, “
Fluke 80i-110s AC/DC Current Probe Technical Data Sheet
,” Fluke Corporation, Everett, WA.
51.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
Schryver
,
A. D.
,
Struijs
,
J.
, and
Zelm
,
R.
,
2009
, “
ReCiPe 2008
,” PRé Consultants, Amersfoort, The Netherlands.
52.
de Berg
,
M.
,
van Kreveld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O. C.
,
2000
,
Computational Geometry
,
Springer
,
Heidelberg, Germany
.
You do not currently have access to this content.