In cold orbital forging, the rocking die performs complex motions on the components and the intervention between them cannot emerge, otherwise the components cannot be shaped successfully. Calculating the rocking die motion track is essential to determining whether there is intervention between the rocking die and components. Thus, this study aims to comprehensively investigate the rocking die motion track in cold orbital forging. For this purpose, an analytical model for calculating the rocking die motion track is first established. Then a universal motion track equation that can denote any geometry and kinematics relationships between the rocking die and components is obtained using this analytical model. To verify the validity of this motion track equation, an experimental study is conducted. The result shows that the calculated rocking die motion track is consistent with the experimental one. According to this valid motion track equation, the characteristics of the rocking die motion track are revealed. Finally, to apply the calculated rocking die motion track for analyzing the intervention between the rocking die and components, two case studies are examined.

References

References
1.
Zhang
,
Y. Q.
,
Shan
,
D. B.
,
Xu
,
W. C.
, and
Lv
,
Y.
,
2010
, “
Study on Spinning Process of a Thin-Walled Aluminum Alloy Vessel Head With Small Ratio of Thickness to Diameter
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
014504
.
2.
Malhotra
,
R.
,
Cao
,
J.
, and
Ren
,
F.
,
2011
, “
Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061019
.
3.
Nelson
,
A. W.
,
Malik
,
A. S.
,
Wendel
,
J. C.
, and
Zipf
,
M. E.
,
2014
, “
Probabilistic Force Prediction in Cold Sheet Rolling by Bayesian Inference
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041006
.
4.
Marciniak
,
Z.
,
1970
, “
A Rocking-Die Technique for Cold-Forming Operations
,”
Mach. Prod. Eng.
,”
117
(
11
), pp.
792
797
.
5.
Hawkyard
,
J. B.
,
Gurnani
,
C. K. S.
, and
Johnson
,
W.
,
1977
, “
Pressure-Distribution Measurements in Rotary Forging
,”
J. Mech. Eng. Sci.
,
19
(4), pp.
135
142
.
6.
Han
,
X. H.
, and
Hua
,
L.
,
2013
, “
3D FE Modelling of Contact Pressure Response in Cold Rotary Forging
,”
Tribol. Int.
,
57
(
1
), pp.
115
123
.
7.
Han
,
X. H.
, and
Hua
,
L.
,
2013
, “
3D FE Modeling Simulation for Wear in Cold Rotary Forging of 20CrMnTi Alloy
,”
ASME J. Tribol.
,
135
(
1
), p.
011101
.
8.
Oudin
,
J.
,
Ravalard
,
Y.
,
Verwaerde
,
G.
, and
Gelin
,
J. C.
,
1985
, “
Force, Torque and Plastic Flow Analysis in Rotary Upsetting of Ring Shaped Billets
,”
Int. J. Mech. Sci.
,
27
(
11–12
), pp.
761
780
.
9.
Canta
,
T.
,
Frunza
,
D.
,
Sabadus
,
D.
, and
Tintelecan
,
C.
,
1998
, “
Some Aspects of Energy Distribution in Rotary Forming Processes
,”
J. Mater. Process. Technol.
,
80-81
(
8
), pp.
195
198
.
10.
Choi
,
S.
,
Na
,
K. H.
, and
Kim
,
J. H.
,
1997
, “
Upper-Bound Analysis of the Rotary Forging of a Cylindrical Billet
,”
J. Mater. Process. Technol.
,
67
(
1–3
), pp.
78
82
.
11.
Appleton
,
E.
, and
Slater
,
R. A. C.
,
1973
, “
Effects of Upper Platen Configuration in the Rotary Forging Process and Rotary Forging Into a Contoured Lower Platen
,”
Int. J. Mach. Tool. Des. Res.
,
13
(
1
), pp.
43
62
.
12.
Standring
,
P. M.
,
Moon
,
J. R.
, and
Appleton
,
E.
,
1980
, “
Plastic Deformation Produced During Indentation Phase of Rotary Forging
,”
Met. Technol.
,
7
(1), pp.
159
166
.
13.
Kalinowska-Ozgowicz
,
E.
,
Krukiewicz
,
W.
,
Kowalski
,
L.
,
Kozik
,
R.
,
Rabus
,
J.
, and
Szota
,
J. G.
,
1997
, “
Orbital Forming of an Oxygen Cylinder Web
,”
J. Mater. Process. Technol.
,
64
(
1–3
), pp.
215
222
.
14.
Yuan
,
S. J.
,
Wang
,
X. H.
,
Liu
,
G.
, and
Zhou
,
D. C.
,
1998
, “
The Precision Forming of Pin Parts by Cold-Drawing and Rotary-Forging
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
252
256
.
15.
Wang
,
G. C.
, and
Zhao
,
G. Q.
,
2002
, “
Simulation and Analysis of Rotary Forging a Ring Workpiece Using Finite Element Method
,”
Finite Elem. Anal. Des.
,
38
(
12
), pp.
1151
1164
.
16.
Liu
,
G.
,
Yuan
,
S. J.
,
Wang
,
Z. R.
, and
Zhou
,
D. C.
,
2004
, “
Explanation of the Mushroom Effect in the Rotary Forging of a Cylinder
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
178
182
.
17.
Sheu
,
J. J.
, and
Yu
,
C. H.
,
2008
, “
The Die Failure Prediction and Prevention of the Orbital Forging Process
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
9
13
.
18.
Nowak
,
J.
,
Madej
,
L.
,
Ziolkiewicz
,
S.
,
Plewinski
,
A.
,
Grosman
,
F.
, and
Pietrzyk
,
M.
,
2008
, “
Recent Development in Orbital Forging Technology
,”
Int. J. Mater. Form.
,
1
(1), pp.
387
390
.
19.
Deng
,
X. B.
,
Hua
,
L.
,
Han
,
X. H.
, and
Song
,
Y. L.
,
2011
, “
Numerical and Experimental Investigation of Cold Rotary Forging of a 20CrMnTi Alloy Spur Bevel Gear
,”
Mater. Des.
,
32
(
3
), pp.
1376
1389
.
20.
Merklein
,
M.
,
Plettke
,
R.
, and
Opel
,
S.
,
2012
, “
Orbital Forming of Tailored Blanks From Sheet Metal
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
263
266
.
21.
Grosman
,
F.
,
Madej
,
Ł.
,
Ziółkiewicz
,
S.
, and
Nowak
,
J.
,
2012
, “
Experimental and Numerical Investigation on Development of New Incremental Forming Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2200
2209
.
22.
Samołyk
,
G.
,
2013
, “
Investigation of the Cold Orbital Forging Process of an AlMgSi Alloy Bevel Gear
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1692
1702
.
23.
Han
,
X. H.
,
Hua
,
L.
,
Zhuang
,
W. H.
, and
Zhang
,
X. C.
,
2014
, “
Process Design and Control in Cold Rotary Forging of Non-Rotary Gear Parts
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2402
2416
.
You do not currently have access to this content.