Iterative closest point (ICP) is a popular algorithm used for shape registration while conducting inspection during a production process. A crucial key to the success of the ICP is the choice of point selection method. While point selection can be customized for a particular application using its prior knowledge, normal-space sampling (NSS) is commonly used when normal vectors are available. Normal-based approach can be further improved by stability analysis—called covariance sampling. The stability analysis should be accurate to ensure the correctness of covariance sampling. In this paper, we go deep into the details of covariance sampling, and propose a few improvements for stability analysis. We theoretically and experimentally show that these improvements are necessary for further success in covariance sampling. Experimental results show that the proposed method is more efficient and robust for the ICP algorithm.

References

References
1.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng
,
137
(
3
), p.
031014
.
2.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng
,
137
(
2
), p.
021005
.
3.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
4.
Rusinkiewicz
,
S.
, and
Levoy
,
M.
,
2001
, “
Efficient Variants of the ICP Algorithm
,”
Third International Conference on 3D Digital Imaging and Modeling
(
3DIM
), Quebec City, Canada, pp. 145–152.
5.
Turk
,
G.
, and
Levoy
,
M.
,
1994
, “
Zippered Polygon Meshes From Range Images
,”
21st Annual Conference on Computer Graphics and Interactive Techniques
,
SIGGRAPH’94
, pp.
311
318
.
6.
Masuda
,
T.
,
Sakaue
,
K.
, and
Yokoya
,
N.
,
1996
, “
Registration and Integration of Multiple Range Images for 3-D Model Construction
,”
13th International Conference on Pattern Recognition
, Vienna, Austria, Aug. 25–29, Vol.
1
, pp.
879
883
.
7.
Weik
,
S.
,
1997
, “
Registration of 3-D Partial Surface Models Using Luminance and Depth Information
,”
International Conference on Recent Advances in 3-D Digital Imaging and Modeling
, Ottawa, Canada, May 12–15, pp.
93
100
.
8.
Gelfand
,
N.
,
Ikemoto
,
L.
,
Rusinkiewicz
,
S.
, and
Levoy
,
M.
,
2003
, “
Geometrically Stable Sampling for the ICP Algorithm
,”
Fourth International Conference on 3-D Digital Imaging and Modeling
(
3DIM
), Oct. 6–10, pp.
260
267
.
9.
Gelfand
,
N.
,
Mitra
,
N. J.
,
Guibas
,
L. J.
, and
Pottmann
,
H.
,
2005
, “
Robust Global Registration
,”
Third Eurographics Symposium on Geometry Processing, SGP’05
, Article 197.
10.
Kwok
,
T.-H.
,
Yeung
,
K.-Y.
, and
Wang
,
C. C. L.
,
2014
, “
Volumetric Template Fitting for Human Body Reconstruction From Incomplete Data
,”
J. Manuf. Syst.
,
33
(
4
), pp.
678
689
.
11.
Salvi
,
J.
,
Matabosch
,
C.
,
Fofi
,
D.
, and
Forest
,
J.
,
2007
, “
A Review of Recent Range Image Registration Methods With Accuracy Evaluation
,”
Image Vision Comput.
,
25
(
5
), pp.
578
596
.
12.
Pottmann
,
H.
, and
Leopoldseder
,
S.
,
2003
, “
A Concept for Parametric Surface Fitting Which Avoids the Parametrization Problem
,”
Comput. Aided Geom. Design
,
20
(
6
), pp.
343
362
.
13.
Chen
,
Y.
, and
Medioni
,
G.
,
1992
, “
Object Modeling by Registration of Multiple Range Images
,”
Image Vision Comput.
,
10
(
3
), pp.
145
155
.
14.
Mitra
,
N. J.
,
Gelfand
,
N.
,
Pottmann
,
H.
, and
Guibas
,
L.
,
2004
, “
Registration of Point Cloud Data From a Geometric Optimization Perspective
,”
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
,
SGP’04
, pp.
22
31
.
15.
Wang
,
W.
,
Pottmann
,
H.
, and
Liu
,
Y.
,
2006
, “
Fitting B-Spline Curves to Point Clouds by Curvature-Based Squared Distance Minimization
,”
ACM Trans. Graph.
,
25
(
2
), pp.
214
238
.
16.
Gelfand
,
N.
, and
Guibas
,
L. J.
,
2004
, “
Shape Segmentation Using Local Slippage Analysis
,”
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
,
SGP’04
, pp.
214
223
.
17.
Bokeloh
,
M.
,
Berner
,
A.
,
Wand
,
M.
,
Seidel
,
H.-P.
, and
Schilling
,
A.
,
2008
,
Slippage Features
, Technical Report WSI-2008-03, University of Tübingen, WSI/GRIS.
18.
Gatzke
,
T.
,
Grimm
,
C.
,
Garland
,
M.
, and
Zelinka
,
S.
,
2005
, “
Curvature Maps for Local Shape Comparison
,”
International Conference on Shape Modeling and Applications
,
SMI’05
, June 13–17, pp.
246
255
.
19.
Tevs
,
A.
,
Berner
,
A.
,
Wand
,
M.
,
Ihrke
,
I.
, and
Seidel
,
H.-P.
,
2011
, “
Intrinsic Shape Matching by Planned Landmark Sampling
,”
Comput. Graphics Forum
,
30
(
2
), pp.
543
552
.
20.
Sun
,
J.
,
Ovsjanikov
,
M.
, and
Guibas
,
L.
,
2009
, “
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
,”
Symposium on Geometry Processing
, pp.
1383
1392
.
21.
Godil
,
A.
, and
Wagan
,
A. I.
,
2011
, “
Salient Local 3D Features for 3D Shape Retrieval
,”
Proc. SPIE
,
7864
, pp.
78640S
78640S–8
.
22.
Heider
,
P.
,
Pierre-Pierre
,
A.
,
Li
,
R.
, and
Grimm
,
C.
,
2011
, “
Local Shape Descriptors, a Survey and Evaluation
,”
4th Eurographics Conference on 3D Object Retrieval
,
EG 3DOR’11
,
pp. 49–5
6
.
23.
Song
,
R.
,
Liu
,
Y.
,
Martin
,
R. R.
, and
Rosin
,
P. L.
,
2012
, “
Saliency-Guided Integration of Multiple Scans
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
1474
1481
.
24.
Zheng
,
Y.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
2011
, “
Efficient Simplex Computation for Fixture Layout Design
,”
Comput. Aided Des.
,
43
(
10
), pp.
1307
1318
.
You do not currently have access to this content.