Due to the adverse effect that distortion has on assembly fit-up and fabrication costs in welded structures, the ability to predict dimensional changes represents an important engineering concern. While distortion can be analyzed using a full three-dimensional (3D) finite element (FE) model, this often proves to be computationally expensive for medium and large structures. In comparison, a two-dimensional (2D) FE model can significantly reduce the time and effort needed to analyze distortion though such analyses often have reduced accuracy. To address these issues, a 3D plane stress model using shell meshes based on the shrinkage volume approach is proposed. By inversing the plastic shrinkage zone geometry, an eccentric loading condition and equivalent plane stress representation can be developed and used to predict distortion in butt welded plates using an isothermal model. The model was validated using deflection data from welded plates and found to provide good accuracy over the range of thicknesses considered. Results obtained from welding of a large containment tank are also presented and further confirm the utility of the method.

References

References
1.
Masubuchi
,
K.
,
1980
,
Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences
,
Pergamon Press
,
Oxford, UK
.
2.
Choi
,
W.
, and
Chung
,
H.
,
2015
, “
Variation Simulation of Compliant Metal Plate Assemblies Considering Welding Distortion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031008
.
3.
Cheng
,
W.
,
2005
, “
In-Plane Shrinkage Strains and Their Effects on Welding Distortion in Thin-Wall Structures
,” Ph.D. dissertation,
The Ohio State University
,
Columbus, OH
.
4.
Spyrou
,
L. A.
, and
Aravas
,
N.
,
2015
, “
Thermomechanical Modeling of Laser Spot Welded Solar Absorbers
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011016
.
5.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison With Experimental Measurements
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
269
277
.
6.
Lorin
,
S.
,
Cromvik
,
C.
,
Edelvik
,
F.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2014
, “
Variation Simulation of Welded Assemblies Using a Thermo-Elastic Finite Element Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031003
.
7.
Han
,
M. S.
,
2002
, “
Fundamental Studies on Welding-Induced Distortion in Thin Plates
,” Ph.D. dissertation,
The Ohio State University
,
Columbus, OH
.
8.
Hinrichsen
,
B.
,
1999
, “
Prediction of Welding Induced Distortion in Thin-Walled Ship Panels
,”
Ship Technol. Res.
,
46
(
3
), pp.
153
161
.
9.
Camilleri
,
D.
,
Comlekci
,
T.
, and
Gray
,
T. F.
,
2005
, “
Computational Prediction of Out-of-Plane Welding Distortion and Experimental Investigation
,”
J. Strain Anal. Eng. Des.
,
40
(
2
), pp.
161
176
.
10.
Liang
,
W.
,
Deng
,
D.
, and
Murakawa
,
H.
,
2005
, “
Measurement of Inherent Deformations in Typical Weld Joints Using Inverse Analysis (Part 2). Prediction of Welding Distortion of Large Structures
,”
Trans. JWRI
,
34
(
1
), pp.
113
123
.
11.
Wang
,
R.
,
Zhang
,
J.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2009
, “
Study of Welding Inherent Deformations in Thin Plates Based on Finite Element Analysis Using Interactive Substructure Method
,”
Mater. Des.
,
30
(
9
), pp.
3474
3481
.
12.
Ueda
,
Y.
,
Fukuda
,
K.
, and
Tanigawa
,
M.
,
1979
, “
New Measuring Method of Three Dimensional Residual Stresses Based on Theory of Inherent Strain (Welding Mechanics, Strength & Design)
,”
Trans. JWRI
,
8
(
2
), pp.
249
256
.
13.
Deng
,
D.
, and
Murakawa
,
H.
,
2008
, “
Prediction of Welding Distortion and Residual Stress in a Thin Plate Butt-Welded Joint
,”
Comput. Mater. Sci.
,
43
(
2
), pp.
353
365
.
14.
Liang
,
W.
, and
Murakawa
,
H.
,
2012
, “
An Inverse Analysis Method to Estimate Inherent Deformations in Thin Plate Welded Joints
,”
Mater. Des.
,
40
, pp.
190
198
.
15.
Jian-Hua
,
W.
, and
Hao
,
L.
,
2000
, “
Prediction of Welding Deformations by FEM Based on Inherent Strains
,”
J. Shanghai Jiaotong Univ.
,
5
(2), pp.
53
56
.
16.
Jung
,
G.
,
2003
, “
Plasticity-Based Distortion Analysis for Fillet Welded Thin Plate T-Joints
,”
The Ohio State University
,
Columbus, OH
.
17.
Jung
,
G.
, and
Tsai
,
C.
,
2004
, “
Fundamental Studies on the Effect of Distortion Control Plans on Angular Distortion in Fillet Welded T-Joints
,”
Weld. J.
,
83
(
7
), pp.
213
223
.
18.
Yang
,
Y.-P.
, and
Athreya
,
B. P.
,
2013
, “
An Improved Plasticity-Based Distortion Analysis Method for Large Welded Structures
,”
J. Mater. Eng. Perform.
,
22
(
5
), pp.
1233
1241
.
19.
Jackson
,
K.
, and
Darlington
,
R.
,
2011
, “
Advanced Engineering Methods for Assessing Welding Distortion in Aero-Engine Assemblies
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
26
(
1
), p.
012018
.
20.
Bachorski
,
A.
,
Painter
,
M.
,
Smailes
,
A.
, and
Wahab
,
M. A.
,
1999
, “
Finite-Element Prediction of Distortion During Gas Metal Arc Welding Using the Shrinkage Volume Approach
,”
J. Mater. Process. Technol.
,
92
, pp.
405
409
.
21.
Tsai
,
C.
,
Cheng
,
W.
, and
Lee
,
H.
,
1995
, Modeling Strategy for Control of Welding-Induced Distortion, Minerals, Metals and Materials Society, Warrendale, PA.
22.
Camilleri
,
D.
,
Comlekci
,
T.
, and
Gray
,
T. G.
,
2006
, “
Thermal Distortion of Stiffened Plate Due to Fillet Welds Computational and Experimental Investigation
,”
J. Therm. Stresses
,
29
(
2
), pp.
111
137
.
23.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
,
2009
,
Thermal Stresses: Advanced Theory and Applications
,
Springer
,
The Netherlands
.
24.
Deshpande
,
A.
,
Tanner
,
D.
,
Sun
,
W.
,
Hyde
,
T.
, and
McCartney
,
G.
,
2011
, “
Combined Butt Joint Welding and Post Weld Heat Treatment Simulation Using SYSWELD and ABAQUS
,”
Proc. Inst. Mech. Eng., Part L
,
225
(
1
), pp.
1
10
.
25.
Bate
,
S.
,
Charles
,
R.
, and
Warren
,
A.
,
2009
, “
Finite Element Analysis of a Single Bead-on-Plate Specimen Using SYSWELD
,”
Int. J. Pressure Vessels Piping
,
86
(
1
), pp.
73
78
.
26.
Xu
,
J.
,
Gilles
,
P.
,
Duan
,
Y.
, and
Yu
,
C.
,
2012
, “
Temperature and Residual Stress Simulations of the NeT Single-Bead-on-Plate Specimen Using SYSWELD
,”
Int. J. Pressure Vessels Piping
,
99
, pp.
51
60
.
27.
Hossain
,
S.
,
Truman
,
C.
, and
Smith
,
D.
,
2012
, “
Finite Element Validation of the Deep Hole Drilling Method for Measuring Residual Stresses
,”
Int. J. Pressure Vessels Piping
,
93
, pp.
29
41
.
28.
Bouchard
,
P.
,
2009
, “
The NeT Bead-on-Plate Benchmark for Weld Residual Stress Simulation
,”
Int. J. Pressure Vessels Piping
,
86
(
1
), pp.
31
42
.
29.
Khamassi
,
A.
,
Armstrong
,
C.
, and
Ou
,
H.
,
2003
, “
A Simplified Approach to Evaluating Weld Induced Distortions
,”
11th Annual Conference of the Association for Computational Mechanics in Engineering, Glasgow
, pp.
21
24
.
30.
Li
,
G.
,
Chen
,
K.
,
Jiang
,
S.
, and
Yin
,
Y.
,
2001
, “
Experimental Study on the Material Properties of Q345 Steel at Elevated Temperatures
,”
J. Build. Struct.
,
31
(
1
), pp.
53
55
(in Chinese).
31.
Li
,
H.
,
2007
, “
Experiment of Strength of 16Mn Steel at Elevated Temperature
,”
J. Steel Constr.
,
8
(
22
), pp.
17
20
(in Chinese).
32.
Taljat
,
B.
,
Zacharia
,
T.
,
Wang
,
X.
,
Keiser
,
J.
,
Swindeman
,
R.
,
Feng
,
Z.
, and
Jirinec
,
M.
,
1998
, “
Numerical Analysis of Residual Stress Distribution in Tubus With Spiral Weld Cladding
,”
Weld. J.
,
77
(
8
), pp.
328
335
.
33.
Lindgren
,
L.-E.
,
2001
, “
Finite Element Modeling and Simulation of Welding
,”
J. Therm. Stresses
,
24
(
4
), pp.
195
231
.
34.
Shi
,
Y.
,
Han
,
R.
,
Huang
,
J.
, and
Yan
,
S.
,
2014
, “
Numerical and Experimental Study of Temperature Field for Double Electrode Gas Metal Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
024502
.
35.
Sulaiman
,
M. S.
,
Manurung
,
Y. H.
,
Haruman
,
E.
,
Rahim
,
M. R. A.
,
Redza
,
M. R.
,
Lidam
,
R. N. A.
,
Abas
,
S. K.
,
Tham
,
G.
, and
Chau
,
C. Y.
,
2011
, “
Simulation and Experimental Study on Distortion of Butt and T-Joints Using Weld Planner
,”
J. Mech. Sci. Technol.
,
25
(
10
), pp.
2641
2646
.
36.
Messler
,
R. W.
,
2008
,
Principles of Welding: Processes, Physics, Chemistry, and Metallurgy
,
Wiley
,
New York
.
You do not currently have access to this content.