This work develops a needle insertion force model based on fracture mechanics, which incorporates the fracture toughness, shear modulus, and friction force of the needle and tissue. Ex vivo tissue experiments were performed to determine these mechanical tissue properties. A double insertion of the needle into the tissue was utilized to determine the fracture toughness. The shear modulus was found by applying an Ogden fit to the stress–strain curve of the tissue achieved through tension experiments. The frictional force was measured by inserting the needle through precut tissue. Results show that the force model predicts within 0.2 N of experimental needle insertion force and the fracture toughness is primarily affected by the needle diameter and needle edge geometry. On average, the tearing force was found to account for 61% of the total insertion force, the spreading force to account for 18%, and the friction force to account for the remaining 21%.

References

References
1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.
2.
Egekvist
,
H.
,
Bjerring
,
P.
, and
Arendt-Nielsen
,
L.
,
1999
, “
Pain and Mechanical Injury of Human Skin Following Needle Insertions
,”
Eur. J. Pain
,
3
(
1
), pp.
41
49
.
3.
Dimaio
,
S. P.
, and
Salcudean
,
S. E.
,
2003
, “
Needle Insertion Modeling and Simulation
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
864
875
.
4.
Ehmann
,
K.
, and
Malukhin
,
K.
,
2012
, “
A Generalized Analytical Model of the Cutting Angles of a Biopsy Needle Tip
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061001
.
5.
Moore
,
J. Z.
,
Zhang
,
Q. H.
,
Mcgill
,
C. S.
,
Zheng
,
H. J.
,
Mclaughlin
,
P. W.
, and
Shih
,
A. J.
,
2010
, “
Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051005
.
6.
Wang
,
Y. C.
,
Tai
,
B. L.
,
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
The Needle With Lancet Point: Geometry for Needle Tip Grinding and Tissue Insertion Force
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041010
.
7.
Moore
,
J. Z.
,
Mclaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Novel Needle Cutting Edge Geometry for End-Cut Biopsy
,”
Med. Phys.
,
39
(
1
), pp.
99
108
.
8.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.
9.
Vedrine
,
L.
,
Prais
,
W.
,
Laurent
,
P. E.
,
Raynal-Olive
,
C.
, and
Fantino
,
M.
,
2003
, “
Improving Needle-Point Sharpness in Prefillable Syringes
,”
Med. Device Technol.
,
14
(
4
), pp.
32
35
.
10.
Davis
,
S. P.
,
Landis
,
B. J.
,
Adams
,
Z. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2004
, “
Insertion of Microneedles Into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force
,”
J. Biomech.
,
37
(
8
), pp.
1155
1163
.
11.
Kim
,
Y. C.
,
Park
,
J. H.
, and
Prausnitz
,
M. R.
,
2012
, “
Microneedles for Drug and Vaccine Delivery
,”
Adv. Drug Delivery Rev.
,
64
(
14
), pp.
1547
1568
.
12.
Han
,
P. D.
, and
Ehmann
,
K.
,
2013
, “
Study of the Effect of Cannula Rotation on Tissue Cutting for Needle Biopsy
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1584
1590
.
13.
Wedlick
,
T. R.
, and
Okamura
,
A. M.
,
2012
, “
Characterization of Robotic Needle Insertion and Rotation in Artificial and Ex Vivo Tissues
,”
4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
62
68
.
14.
Barnett
,
A. C.
,
Wolkowicz
,
K.
, and
Moore
,
J. Z.
,
2014
, “
Vibrating Needle Cutting Force
,”
ASME
Paper No. V002T02A025.
15.
Begg
,
N. D. M.
, and
Slocum
,
A. H.
,
2014
, “
Audible Frequency Vibration of Puncture-Access Medical Devices
,”
Med. Eng. Phys.
,
36
(
3
), pp.
371
377
.
16.
Huang
,
Y. C.
,
Tsai
,
M. C.
, and
Lin
,
C. H.
,
2012
, “
A Piezoelectric Vibration-Based Syringe for Reducing Insertion Force
,”
International Symposium on Ultrasound in the Control of Industrial Processes
(
UCIP
),
42
, pp.
1
4
17.
Izumi
,
H.
,
Yajima
,
T.
,
Aoyagi
,
S.
,
Tagawa
,
N.
,
Arai
,
Y.
, and
Hirata
,
M.
,
2008
, “
Combined Harpoonlike Jagged Microneedles Imitating Mosquito's Proboscis and Its Insertion Experiment With Vibration
,”
IEEJ Trans. Electr. Electron. Eng.
,
3
(
4
), pp.
425
431
.
18.
Yang
,
M.
, and
Zahn
,
J. D.
,
2004
, “
Microneedle Insertion Force Reduction Using Vibratory Actuation
,”
Biomed. Microdevices
,
6
(
3
), pp.
177
182
.
19.
Heverly
,
M.
,
Dupont
,
P.
, and
Triedman
,
J.
,
2005
, “
Trajectory Optimization for Dynamic Needle Insertion
,”
2005 IEEE International Conference on Robotics and Automation
(
ICRA
), Apr. 18–22, Vol.
1–4
, pp.
1646
1651
.
20.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2009
, “
Fast Needle Insertion to Minimize Tissue Deformation and Damage
,”
2009 IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, Vol.
1–7
, pp.
2761
2766
.
21.
Kobayashi
,
Y.
,
Sato
,
T.
, and
Fujie
,
M. G.
,
2009
, “
Modeling of Friction Force Based on Relative Velocity Between Liver Tissue and Needle for Needle Insertion Simulation
,” 2009 Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society
, Minneapolis, MN, Sep. 3–6, Vol.
1–20
, pp.
5274
5278
.
22.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2004
, “
Trajectory Generation for Robotic Needle Insertion in Soft Tissue
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
1–7
, pp.
2730
2733
.
23.
Frick
,
T. B.
,
Marucci
,
D. D.
,
Cartmill
,
J. A.
,
Martin
,
C. J.
, and
Walsh
,
W. R.
,
2001
, “
Resistance Forces Acting on Suture Needles
,”
J. Biomech.
,
34
(
10
), pp.
1335
1340
.
24.
Koelmans
,
W.
,
Krishnamoorthy
,
G.
,
Heskamp
,
A.
,
Wissink
,
J.
,
Misra
,
S.
, and
Tas
,
N.
,
2013
, “
Microneedle Characterization Using a Double-Layer Skin Simulant
,”
Mech. Eng. Res.
,
3
(
2
), pp.
51
63
.
25.
Crouch
,
J. R.
,
Schneider
,
C. M.
,
Wainer
,
J.
, and
Okamura
,
A. M.
,
2005
, “
A Velocity-Dependent Model for Needle Insertion in Soft Tissue
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005
, Springer, New York, Vol.
3750
, pp.
624
632
.
26.
Yan
,
K. G.
,
Podder
,
T.
,
Yu
,
Y.
,
Liu
,
T.-I.
,
Cheng
,
C. W. S.
, and
Ng
,
W. S.
,
2009
, “
Flexible Needle–Tissue Interaction Modeling With Depth-Varying Mean Parameter: Preliminary Study
,”
IEEE Trans. Biomed. Eng.
,
56
(
2
), pp.
255
262
.
27.
Dehghan
,
E.
,
Wen
,
X.
,
Zahiri-Azar
,
R.
,
Marchal
,
M.
, and
Salcudean
,
S. E.
,
2007
, “
Modeling of Needle-Tissue Interaction Using Ultrasound-Based Motion Estimation
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007
, Springer, New York, Vol.
4791
, pp.
709
716
.
28.
Roesthuis
,
R. J.
,
Van Veen
,
Y. R.
,
Jahya
,
A.
, and
Misra
,
S.
,
2011
, “
Mechanics of Needle-Tissue Interaction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sep. 25–30, pp.
2557
2563
.
29.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2004
, “
Mechanisms of Deep Penetration of Soft Solids, With Application to the Injection and Wounding of Skin
,”
Proc. R. Soc. London, Ser. A
,
460
(
2050
), pp.
3037
3058
.
30.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.
31.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Mechanics of Dynamic Needle Insertion into a Biological Material
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
934
943
.
32.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
CRC
, Boca Raton, FL.
33.
Atkins
,
A. G.
, and
Mai
,
Y.-W.
,
1985
,
Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials
,
Ellis Horwood/Halsted
,
Chichester, UK/New York
.
34.
Atkins
,
A. G.
,
2005
, “
Toughness and Cutting: A New Way of Simultaneously Determining Ductile Fracture Toughness and Strength
,”
Eng. Fract. Mech.
,
72
(
6
), pp.
849
860
.
35.
Liu
,
J.
,
Bai
,
Y. L.
, and
Xu
,
C. Y.
,
2014
, “
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011010
.
36.
Orlowski
,
K. A.
,
Ochrymiuk
,
T.
,
Atkins
,
A.
, and
Chuchala
,
D.
,
2013
, “
Application of Fracture Mechanics for Energetic Effects Predictions While Wood Sawing
,”
Wood Sci. Technol.
,
47
(
5
), pp.
949
963
.
37.
Azar
,
T.
, and
Hayward
,
V.
,
2008
, “
Estimation of the Fracture Toughness of Soft Tissue From Needle Insertion
,”
Biomedical Simulation
, Springer, New York, pp.
166
175
.
38.
Mahvash
,
M.
, and
Hayward
,
V.
,
2001
, “
Haptic Rendering of Cutting: A Fracture Mechanics Approach
,”
J. Haptics Res.
,
2
(
3
), pp.
1
12
.
39.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
838
848
.
40.
Asadian
,
A.
,
Patel
,
R. V.
, and
Kermani
,
M. R.
,
2011
, “
A Distributed Model for Needle-Tissue Friction in Percutaneous Interventions
,”
2011 IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
1896
1901
.
41.
Ankersen
,
J.
,
Birkbeck
,
A. E.
,
Thomson
,
R. D.
, and
Vanezis
,
P.
,
1999
, “
Puncture Resistance and Tensile Strength of Skin Simulants
,”
Proc. Inst. Mech. Eng. Part H-J. Eng. Med.
,
213
(
H6
), pp.
493
501
.
42.
Zhou
,
B.
,
Xu
,
F.
,
Chen
,
C. Q.
, and
Lu
,
T. J.
,
2010
, “
Strain Rate Sensitivity of Skin Tissue Under Thermomechanical Loading
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
(
1912
), pp.
679
690
.
43.
Vincent
,
J.
,
2012
,
Structural Biomaterials
,
Princeton University
, Princeton, NJ.
44.
Nalla
,
R. K.
,
Stolken
,
J. S.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Fracture in Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms
,”
J. Biomech.
,
38
(
7
), pp.
1517
1525
.
45.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.
46.
Gokgol
,
C.
,
Basdogan
,
C.
, and
Canadinc
,
D.
,
2012
, “
Estimation of Fracture Toughness of Liver Tissue: Experiments and Validation
,”
Med. Eng. Phys.
,
34
(
7
), pp.
882
891
.
47.
Pereira
,
B. P.
,
Lucas
,
P. W.
, and
Sweehin
,
T.
,
1997
, “
Ranking the Fracture Toughness of Thin Mammalian Soft Tissues Using the Scissors Cutting Test
,”
J. Biomech.
,
30
(
1
), pp.
91
94
.
48.
Purslow
,
P. P.
,
1983
, “
Measurement of the Fracture-Toughness of Extensible Connective Tissues
,”
J. Mater. Sci.
,
18
(
12
), pp.
3591
3598
.
49.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
Radford
,
D.
,
2006
, “
The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates
,”
Int. J. Impact Eng.
,
32
(
9
), pp.
1384
1402
.
You do not currently have access to this content.