Alumina ceramics, due to their excellent properties of high hardness, corrosion resistance, and low thermal expansion coefficient, are important industrial materials with a wide range of applications, but these materials also present difficulty in machining with low material removal rates and high tool wear. This study is concerned with laser-assisted machining (LAM) of high weight percentage of alumina ceramics to improve the machinability by a single point cutting tool while reducing the cutting forces. A multiscale model is developed for simulating the machining of alumina ceramics. In the polycrystalline form, the properties of alumina ceramics are strongly related to the glass interface existing in their microstructure, particularly at high temperatures. The interface is characterized by a cohesive zone model (CZM) with the traction–separation law while the alumina grains are modeled as continuum elements with isotropic properties separated by the interface. Bulk deformation and brittle failure are considered for the alumina grains. Molecular dynamics (MD) simulations are carried out to obtain the atomistic structures and parameterize traction–separation laws for the interfaces of different compositions of alumina ceramics at high temperatures. The generated parameterized traction–separation laws are then incorporated into a finite element model in Abaqus to simulate the intergranular cracks. For validation purposes, simulated results of the multiscale approach are compared with the experimental measurements of the cutting forces. The model is successful in predicting cutting forces with respect to the different weight percentage and composition of alumina ceramics at high temperatures in LAM processes.

References

References
1.
Chang
,
C.
, and
Kuo
,
C.
,
2007
, “
Evaluation of Surface Roughness in Laser-Assisted Machining of Aluminum Oxide Ceramics With Taguchi Method
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
141
147
.
2.
Chang
,
C.
, and
Kuo
,
C.
,
2007
, “
An Investigation of Laser-Assisted Machining of Al2O3 Ceramics Planning
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
452
461
.
3.
Zhang
,
X. H.
,
Yan
,
C.
,
Chen
,
G. Y.
,
An
,
W. K.
,
Huang
,
T. M.
, and
Liu
,
W.
,
2013
, “
Selection of Process Parameters for Laser Assisted Machining of Al2O3 Ceramics
,”
Adv. Mater. Res.
,
683
, pp.
631
634
,
4.
Uehara
,
K.
, and
Takeshita
,
H.
,
1986
, “
Cutting Ceramics With a Technique of Hot Machining
,”
CIRP Ann.–Manuf. Technol.
,
35
(
1
), pp.
55
58
.
5.
König
,
W.
, and
Wageman
,
A.
,
1991
, “
Fine Machining of Advanced Ceramics
,”
Ceramics Today Tomorrow's Ceramics, 7th International Meeting on Modern Ceramics Technologies, 7th CIMTEC- World Ceramics Congress
,
Montecatini, Italy
, pp.
2769
2783
.
6.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
1998
, “
Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to Translating Laser Heat Source: Part I—Comparison of Surface Temperature Measurements With Theoretical Results
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
899
906
.
7.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2001
, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
639
646
.
8.
Tian
,
Y.
, and
Shin
,
Y. C.
,
2007
, “
Multi-Scale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
287
295
.
9.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2011
, “
Molecular Dynamics Based Cohesive Zone Law for Describing Al-SiC Interface Mechanics
,”
Composites Part A
,
42
(
4
), pp.
355
363
.
10.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Scale Modeling of Subsurface Damage in Laser-Assisted Machining of Particulate Reinforced Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
153
160
.
11.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.
12.
Powell-Doğan
,
C. A.
, and
Heuer
,
A. H.
,
1990
, “
Microstructure of 96% Alumina Ceramics: I, Characterization of the As-Sintered Materials
,”
J. Am. Ceram. Soc.
,
73
(
12
), pp.
3670
3676
.
13.
Yoshida
,
H.
,
Ikuhara
,
Y.
, and
Sakuma
,
T.
,
2002
, “
Grain Boundary Electronic Structure Related to the High-Temperature Creep Resistance in Polycrystalline Al2O3
,”
Acta Mater.
,
50
(
11
), pp.
2955
2966
.
14.
Zhang
,
S.
,
2007
, “
Molecular Dynamic Simulations of the Intergranular Films between Alumina and Silicon Nitride Crystal Grains
,” Ph.D. thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ.
15.
Brydson
,
R.
,
Chen
,
S. C.
,
Riley
,
F. L.
,
Milne
,
S. J.
,
Pan
,
X.
, and
Rühle
,
M.
,
1998
, “
Microstructure and Chemistry of Intergranular Glassy Films in Liquid-Phase-Sintered Alumina
,”
J. Am. Ceram. Soc.
,
81
(
2
), pp.
369
379
.
16.
Clarke
,
D. R.
,
1987
, “
On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials
,”
J. Am. Ceram. Soc.
,
70
(
1
), pp.
15
22
.
17.
Powell-Doğan
,
C. A.
, and
Heue
,
A. H.
,
1990
, “
Microstructure of 96% Alumina Ceramics: III, Crystallization of High-Calcia Boundary Glasses
,”
J. Am. Ceram. Soc.
,
73
(
12
), pp.
3684
3691
.
18.
Zhang
,
S.
, and
Garofalini
,
S. H.
,
2006
, “
Molecular Dynamics Simulations of the Effect of the Composition of Calcium Alumino Silicate Intergranular Films on Alumina Grain Growth
,”
J. Phys. Chem. B
,
110
(
5
), pp.
2233
2240
.
19.
Singh
,
D.
, and
Shetty
,
D. K.
,
1989
, “
Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading
,”
J. Am. Ceram. Soc.
,
72
(
1
), pp.
78
84
.
20.
Budynas
,
R.
, and
Nisbett
,
J. K.
,
2007
,
Shigley's Mechanical Engineering Design
,
8th ed.
,
McGraw-Hill
,
London
, pp.
220
221
.
21.
Tian
,
Y.
, and
Shin
,
Y. C.
,
2006
, “
Thermal Modeling for Laser-Assisted Machining of Silicon Nitride Ceramics With Complex Features
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
425
434
.
22.
Zhang
,
S.
, and
Garofalini
,
S. H.
,
2005
, “
Molecular Dynamics Computer Simulations of the Interface Structure of Calcium–Alumino–Silicate Intergranular Films Between Combined Basal and Prism Planes of α-Al2O3
,”
J. Am. Ceram. Soc.
,
88
(
1
), pp.
202
209
.
23.
Vashishta
,
P.
,
Kalia
,
R. K.
,
Nakano
,
A.
, and
Rino
,
J. P.
,
2008
, “
Interaction Potentials for Alumina and Molecular Dynamics Simulations of Amorphous and Liquid Alumina
,”
J. Appl. Phys.
,
103
(
8
), p.
083504
.
24.
Yang
,
H.
,
,
Y.
,
Chen
,
M.
, and
Guo
,
Z.
,
2007
, “
A Molecular Dynamics Study on Melting Point and Specific Heat of Ni3Al Alloy
,”
Sci. China Ser. G: Phys. Mech. Astron.
,
50
(
4
), pp.
407
413
.
25.
Yoo
,
S.
,
Xantheas
,
S. S.
, and
Zeng
,
X. C.
,
2009
, “
The Melting Temperature of Bulk Silicon From Ab Initio Molecular Dynamics Simulations
,”
Chem. Phys. Lett.
,
481
(
1–3
), pp.
88
90
.
26.
Watt
,
S. W.
,
Chisholm
,
J. A.
,
Jones
,
W.
, and
Motherwell
,
S.
,
2004
, “
A Molecular Dynamics Simulation of the Melting Points and Glass Transition Temperatures of Myo- and Neo-Inositol
,”
J. Chem. Phys.
,
121
(
19
), pp.
9565
9573
.
27.
Alavi
,
S.
, and
Thompson
,
D. L.
,
2006
, “
Molecular Dynamics Simulations of the Melting of Aluminum Nanoparticles
,”
J. Phys. Chem. A
,
110
(
4
), pp.
1518
1523
.
28.
Zheng
,
L.
,
Skuroda
,
S.
,
Liu
,
H.
,
Du
,
B.
,
Wei
,
J.
, and
Zhao
,
Y.
,
2013
, “
Molecular Dynamics Simulations on Melting of Aluminum
,”
Appl. Mech. Mater.
,
423–426
, pp.
935
938
.
29.
Blonski
,
S.
, and
Garofalini
,
S. H.
,
1997
, “
Atomistic Structure of Calcium Silicate Intergranular Films in Alumina Studied by Molecular Dynamics Simulations
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1997
2004
.
30.
MakeItFrom
,
2014
, 96% Purity Alumina, http://www.makeitfrom.com/materialdata/?for=96-Percent-Purity-Alumina, last accessed Jul. 16.
31.
CoorsTek, Inc.
,
2014
,
AD-96 Alumina,
http://www.coorstek.com/materials/ceramics/alumina_ad-96.php, last accessed Jul. 16.
32.
Superior Technical Ceramics Corp., Alumina
,
2014
, http://www.ceramics.net/serices/materials-engineering-expertise/alumina, last accessed Jul. 16.
33.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2000
, “
Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2213
2233
.
34.
Munro
,
R. G.
,
1997
, “
Evaluated Material Properties for a Sintered α-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.
35.
Kannan
,
M. V.
,
Kuppan
,
P.
,
Kumar
,
A. S.
,
Kumar
,
K. R.
, and
Jegaraj
,
J. J. R.
,
2014
, “
Effect of Laser Scan Speed on Surface Temperature, Cutting Forces and Tool Wear During Laser Assisted Machining of Alumina
,”
Procedia Eng.
,
97
, pp.
1647
1656
.
You do not currently have access to this content.