The purpose of this research is to perform an investigation of continuously dispensed material (or filament) deformation during dispensing. Depending on the material properties, and the process parameters the deformation behavior of the filament changes, so as the formation of the filament front (the front face of the filament, i.e., dispensing material). The focus of this investigation is the study of the evolution of the filament shape for Newtonian fluid experimentally and computationally. The experimental analysis has been performed with commercially available monomers with the help of a screw driven micro dispensing system installed on a high precision xyz translation stage. The imaging system consists of a high resolution CMOS camera. The developed computational model utilizes an adaptive quadtree spatial discretization with piecewise–linear geometrical volume–of–fluid (VOF) method for calculating the volume fraction for this multiphase problem. The model employs the continuum–surface–force model for formulating the surface tension, whereas the height function (HF) to estimate the curvature for tracking the evolution of the filament shape during the deformation. The computational model has been developed using an open source solver, Gerris Flow Solver. The considered governing and process parameters for this investigation are Froude number (Fr), Reynolds number (Re), gap ratio (GR), and velocity ratio (VR). The VR is the ratio of travel velocity to dispensing velocity. The GR is the ratio of filament height to filament diameter. Results have been presented as the interface contour for the filament front. The investigation shows that the results found from the developed model have a good agreement with experimental results, and the deformation phenomena is greatly influenced by the variation of the governing parameters.

References

1.
Lewis
,
J. A.
, and
Gratson
,
G. M.
,
2004
, “
Direct Writing in Three Dimensions
,”
Mater. Today
,
7
(
7–8
), pp.
32
39
.
2.
Geng
,
L.
,
Feng
,
W.
,
Hutmacher
,
D. W.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Fuh
,
J. Y. H.
,
2005
, “
Direct Writing of Chitosan Scaffolds Using a Robotic System
,”
Rapid Prototyping J.
,
11
(
2
), pp.
90
97
.
3.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.
4.
Barry
,
R. A.
,
Shepherd
,
R. F.
,
Hanson
,
J. N.
,
Nuzzo
,
R. G.
,
Wiltzius
,
P.
, and
Lewis
,
J. A.
,
2009
, “
Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth
,”
Adv. Mater.
,
21
(
23
), pp.
2407
2410
.
5.
Ahn
,
B. Y.
,
Lorang
,
D. J.
, and
Lewis
,
J. A.
,
2011
, “
Transparent Conductive Grids Via Direct Writing of Silver Nanoparticle Inks
,”
Nanoscale
,
3
(
7
), pp.
2700
2702
.
6.
Palmer
,
J.
,
Yang
,
P.
,
Davis
,
D.
,
Chavez
,
B.
,
Gallegos
,
P.
,
Wicker
,
R.
, and
Medina
,
F.
,
2004
, “
Rapid Prototyping of High Density Circuitry
,”
Proceedings of the Rapid Prototyping and Manufacturing Conference
, pp.
10
13
.
7.
Casanova
,
J. J.
,
Taylor
,
J. A.
, and
Lin
,
J. S.
,
2010
, “
Design of a 3-D Fractal Heatsink Antenna
,”
IEEE Antenn Wirel Propag. Lett.
,
9
, pp.
1061
1064
.
8.
Olivas
,
R. I.
,
2011
,
Conformal Electronics Packaging Through Additive Manufacturing and Micro-Dispensing
,
The University Of Texas at El Paso
,
El Paso, TX
.
9.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
10.
Medina
,
F.
,
Lopes
,
A.
,
Inamdar
,
A.
,
Hennessey
,
R.
,
Palmer
,
J.
,
Chavez
,
B.
, and
Wicker
,
R.
,
2005
, “
Integrating Multiple Rapid Manufacturing Technologies for Developing Advanced Customized Functional Devices
,”
Proceedings of the Rapid Prototyping and Manufacturing Conference
, pp.
10
12
.
11.
Zhang
,
Y.
,
Liu
,
C. Q.
, and
Whalley
,
D.
,
2009
, “
Direct-Write Techniques for Maskless Production of Microelectronics: A Review of Current State-Of-The-Art Technologies
,”
Proceedings of the International Conference on Electronic Packaging Technology and High Density Packaging (Icept-Hdp)
, pp.
421
427
.
12.
Vatani
,
M.
,
Engeberg
,
E. D.
, and
Choi
,
J. W.
,
2014
, “
Detection of the Position, Direction, and Speed of Sliding Contact With a Multi-Layer Compliant Tactile Sensor Fabricated Using Direct-Print Technology
,”
Smart Mater. Struct.
,
23
(
9
), p.
095008
.
13.
Li
,
B.
,
Clark
,
P. A.
, and
Church
,
K. H.
,
2007
, “
Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
,”
ASME
Paper No. MSEC2007-31037, pp.
715
721
.
14.
Lu
,
Y. F.
,
Vatani
,
M.
, and
Choi
,
J. W.
,
2013
, “
Direct-Write/Cure Conductive Polymer Nanocomposites for 3D Structural Electronics
,”
J. Mech. Sci. Technol.
,
27
(
10
), pp.
2929
2934
.
15.
Medina
,
F.
,
Lopes
,
A.
,
Inamdar
,
A.
,
Hennessey
,
R.
,
Palmer
,
J.
,
Chavez
,
B.
,
Davis
,
D.
,
Gallegos
,
P.
, and
Wicker
,
R.
,
2005
, “
Hybrid Manufacturing: Integrating Direct-Write and Stereolithography
,”
Proceedings of the 2005 Solid Freeform Fabrication
, pp.
129
143
.
16.
Periard
,
D.
,
Malone
,
E.
, and
Lipson
,
H.
, 1999, “
Printing Embedded Circuits
,”
Proceedings of the 18th Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
503
512
.
17.
Robinson
,
C.
,
Stucker
,
B.
,
Lopes
,
A.
,
Wicker
,
R.
, and
Palmer
,
J.
,
2007
, “
Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to Create Advanced Structures With Embedded Electrical Circuitry
,”
Proceedings of the 17th Solid Freeform Fabrication Symposium
, pp.
60
69
.
18.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
.
19.
Chang
,
C. C.
,
Boland
,
E. D.
,
Williams
,
S. K.
, and
Hoying
,
J. B.
,
2011
, “
Direct-Write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies
,”
ASME J. Biomed. Mater. Res. Part B
,
98
(
1
), pp.
160
170
.
20.
Yu
,
Y.
,
Zhang
,
Y. H.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.
21.
Vatani
,
M.
,
Engeberg
,
E. D.
, and
Choi
,
J. W.
,
2013
, “
Force and Slip Detection With Direct-Write Compliant Tactile Sensors Using Multi-Walled Carbon Nanotube/Polymer Composites
,”
Sens. Actuators, A
,
195
, pp.
90
97
.
22.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.
23.
Samet
,
H.
,
1990
,
Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
24.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
567
603
.
25.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.
26.
Torrey
,
M. D.
,
Cloutman
,
L. D.
,
Mjolsness
,
R. C.
, and
Hirt
,
C.
,
1985
,
NASA-VOF2D: A Computer Program for Incompressible Flows With Free Surfaces
,
Los Alamos National Laboratory
,
Española, NM
.
27.
Cummins
,
S. J.
,
Francois
,
M. M.
, and
Kothe
,
D. B.
,
2005
, “
Estimating Curvature From Volume Fractions
,”
Comput. Struct.
,
83
(
6–7
), pp.
425
434
.
28.
Lebaigue
,
O.
,
2013
, “
Two-Phase Microflows
,”
Microfluidics
,
Wiley
,
Hoboken, NJ
, pp.
235
301
.
You do not currently have access to this content.