Mechanistic force prediction models require a calibration phase to determine the cutting coefficients describing the tool–target material interaction. The model prediction performance depends on the experimental correctness and representativeness of input data, especially in micromilling, where facing process uncertainties is a big challenge. The present paper focuses on input data correctness introducing a clear and repeatable calibration experimental procedure based on accurate force data acquisitions. Input data representativeness has been directly connected to the calibration window choice, i.e., the selection of the space of process parameters combinations used to calibrate the model. Also, the model validation has to be carefully carried out to make the model significant: the present paper proposes a clear and repeatable validation procedure based on the model performance index calculation over the whole process operating window, i.e., the space of parameters where the process works correctly. An objective indication of the model suitability can be obtained by applying this procedure. Comparisons among prediction performances produced by different calibration windows are allowed. This paper demonstrates how the calibration window selection determines the model prediction performance, which seems to improve if calibration is carried out where forces assume high values. Some important considerations on the process parameters role on cutting forces and on the model capability have also been drawn from the model validation results.

References

References
1.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
655
663
.
2.
Van Luttervelt
,
C. A.
,
Childs
,
T. H. C.
,
Jawahir
,
I. S.
,
Klocke
,
F.
,
Venuvinod
,
P. K.
,
Altintas
,
Y.
,
Armarego
,
E. J. A.
,
Dornfeld
,
D.
,
Grabec
,
I.
,
Leopold
,
J.
,
Lindstrom
,
B.
,
Lucca
,
D.
,
Obikawa
,
T.
,
Shirakashi
,
T.
, and
Sato
,
H.
,
1998
, “
Present Situation and Future Trends in Modeling of Machining Operations—Progress Report of the CIRP Working Group “Modeling of Machining Operations
,”
CIRP Ann.
,
47
(
2
), pp.
588
626
.
3.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
4.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.-Manuf. Technol.
,
52
(2), pp.
483
507
.
5.
Dornfeld
,
D.
, and
Lee
,
D. E.
,
2007
,
Precision Manufacturing
,
Springer
, New York.
6.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
, I
. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
695
718
.
7.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.-Manuf. Technol.
,
49
(1), pp.
61
64
.
8.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.
9.
Subbiah
,
S.
, and
Melkote
,
S. N.
,
2007
, “
Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
321
331
.
10.
Wang
,
J.
,
Gong
,
Y.
,
Abba
,
G.
,
Antoine
,
J. F.
, and
Shi
,
J.
,
2009
, “
Chip Formation Analysis in Micromilling Operation
,”
Int. J. Adv. Manuf. Technol.
,
45
(
5–6
), pp.
430
447
.
11.
Jin
,
X.
, and
Altintas
,
Y.
,
2012
, “
Prediction of Micro-Milling Forces With Finite Element Method
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
542
552
.
12.
Afazov
,
S. M.
,
Ratchev
,
S. M.
, and
Segal
,
J.
,
2010
, “
Modeling and Simulation of Micro-Milling Cutting Forces
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2154
2162
.
13.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1998
, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
,
219
(
1
), pp.
84
97
.
14.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
75
80
.
15.
Kim
,
C. J.
,
Mayor
,
J. R.
, and
Ni
,
J.
,
2012
, “
Molecular Dynamics Simulations of Plastic Material Deformation in Machining With a Round Cutting Edge
,”
Int. J. Precis. Eng. Manuf.
,
13
(
8
), pp.
1303
1309
.
16.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
17.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
18.
Altintas
,
Y.
, and
Lee
,
P.
,
1998
, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
684
692
.
19.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters—Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
20.
Bissacco
,
G.
,
Hansen
,
H. N.
, and
Slunsky
,
J.
,
2008
, “
Modeling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
113
116
.
21.
Kaymakci
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
34
45
.
22.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H. Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.
23.
Altintas
,
Y.
, and
Kilic
,
Z. M.
,
2013
, “
Generalized Dynamic Model of Metal Cutting Operations
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
47
50
.
24.
Kumar
,
M.
,
Chang
,
C. J.
,
Melkote
,
S. N.
, and
Joseph
, V
. R.
,
2013
, “
Modeling and Analysis of Forces in Laser Assisted Micro Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041018
.
25.
Tlusty
,
J.
, and
MacNeil
,
P.
,
1975
, “
Dynamics of Cutting Forces in End Milling
,”
CIRP Ann.
,
24
(
1
), pp.
21
25
.
26.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The Prediction of Cutting Forces in End Milling With Application of Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
.
27.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
(
4
), pp.
269
279
.
28.
Bao
,
W. Y.
, and
Tansel
, I
. N.
,
2000
, “
Modeling Micro-End-Milling Operations—Part I: Analytical Cutting Force Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2155
2173
.
29.
Bao
,
W. Y.
, and
Tansel
, I
. N.
,
2000
, “
Modeling Micro-End-Milling Operations—Part II: Tool Run-Out
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2175
2192
.
30.
Bao
,
W. Y.
, and
Tansel
, I
. N.
,
2000
, “
Modeling Micro-End-Milling Operations—Part III: Influence of Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2193
2211
.
31.
Zaman
,
M. T.
,
Kumar
,
A. S.
,
Rahman
,
M.
, and
Sreeram
,
S.
,
2006
, “
A Three-Dimensional Analytical Cutting Force Model for Micro End Milling Operation
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
353
366
.
32.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
.
33.
Jun
,
M. B. G.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S. S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
.
34.
Yucesan
,
G.
,
Xie
,
Q.
, and
Bayoumi
,
A. E.
,
1993
, “
Determination of Process Parameters Through a Mechanistic Force Model of Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
33
(
4
), pp.
627
641
.
35.
Ko
,
J. H.
,
Yun
,
W. S.
,
Cho
,
D. W.
, and
Ehmann
,
K. F.
,
2002
, “
Development of a Virtual Machining System—Part1: Approximation of the Size Effect for Cutting Force Prediction
,”
Int. J. Mach. Tools Manuf.
,
42
(
15
), pp.
1595
1605
.
36.
Ko
,
J. H.
, and
Cho
,
D. W.
,
2005
, “
3D Ball‐End Milling Force Model Using Instantaneous Cutting Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
1
12
.
37.
Lee
,
H. U.
,
Cho
,
D. W.
, and
Ehmann
,
K. F.
,
2008
, “
A Mechanistic Model of Cutting Forces in Micro‐End‐Milling With Cutting‐Condition‐Independent Cutting Forces Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031102
.
38.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.
39.
Jun
,
M. B. G.
,
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Micro-End Milling—Part 1: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
893
900
.
40.
Jun
,
M. B. G.
,
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Micro-End Milling—Part 2: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
901
912
.
41.
Altintas
,
Y.
, and
Jin
,
X.
,
2011
, “
Mechanics of Micro-Milling With Round Edge Tools
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
77
80
.
42.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
698
.
43.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
44.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
.
45.
Korkmaz
,
E.
,
Bediz
,
B.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dynamic Characterization of Multi-Axis Dynamometers
,”
Precis. Eng.
,
38
(
1
), pp.
148
161
.
46.
Kistler
9317B 3-Component Force Link Instruction Manual, last accessed December 11,
2013
, http://www.kistler.com/us/en/product/force/9317B
47.
Altintas
,
Y.
, and
Park
,
S. S.
,
2004
, “
Dynamic Compensation of Spindle‐Integrated Force Sensors
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
305
308
.
48.
Annoni
,
M.
, and
Semeraro
,
Q.
,
2010
, “
Factors Affecting the Force Variability in Micro-End-Milling
,”
7th International Conference on Multi-Material Micro Manufacture, 4M 2010 Conference, Bourg en Bresse and Oyonnax
,
France
, pp.
161
164
.
49.
Kim
,
C. J.
,
Mayor
,
J. R.
, and
Ni
,
J.
,
2004
, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
710
718
.
50.
Montgomery
,
D. C.
,
2001
,
Design and Analysis of Experiments
,
5th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.