Service provider (SP) know-hows are essential in machining service (MS) encapsulation in the cloud. However, since the acquisition of the know-hows for complex parts machining requires investing considerable manpower and resources in R&D, this kind of machining know-hows is usually considered as one of the core competences of the SP who makes them unshareable. Targeting the problem, this paper presents a new cloud manufacturing (CM) architecture in which MSs are encapsulated within each SP with standardized machining task description strategies (SMTDS). Only the capability information about what the SP can do is provided to the cloud. During service matching, SMTDS is also applied for user request formulation to improve the matching efficiency and quality. For complex parts in large size, high machining requirements, high value, short delivery cycle, and complex structures, e.g., aircraft structural parts, unacceptable machining quality or delivery delay may cause a much greater loss not only in economy. In the proposed CM architecture, to guarantee the feasibility of the MSs for complex structural parts, machining operations for the user preferred services could be generated by mapping the corresponding typical machining plans (TMP) to the part based on the dynamic feature concept to support accurate evaluations of the MSs. The machining of an aircraft structural part is then applied as a test user request to demonstrate how the proposed method works for finding MS for complex parts.

References

References
1.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
.
2.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-Of-The-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
.
3.
Wang
,
X. V.
, and
Xu
,
X.
,
2013
, “
An Interoperable Solution for Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
232
247
.
4.
Li
,
B.
,
Zhang
,
L.
,
Wang
,
S.
,
Tao
,
F.
,
Cao
,
J.
,
Jiang
,
X.
, Song, X., and Chai, X.,
2010
, “
Cloud Manufacturing: A New Service-Oriented Networked Manufacturing Model
,”
Comput. Integr. Manuf. Syst.
,
16
(
1
), pp.
1
7
.
5.
Zhang
,
L.
,
Luo
,
Y.
,
Tao
,
F.
,
Li
,
B.
,
Ren
,
F.
,
Zhang
,
X.
,
Guo
,
H.
,
Cheng
,
Y.
,
Hu
,
A.
, and
Liu
,
Y.
,
2014
, “
Cloud Manufacturing: A New Manufacturing Paradigm
,”
Enterp. Inf. Syst.
,
8
(
2
), pp.
1345
1356
.
6.
Ren
,
L.
,
Zhang
,
L.
,
Tao
,
F.
,
Zhao
,
C.
,
Chai
,
X.
, and
Zhao
,
X.
,
2015
, “
Cloud Manufacturing: From Concept to Practice
,”
Enterp. Inf. Syst.
,
9
(
2
), pp.
186
209
.
7.
Tao
,
F.
,
Zhang
,
L.
,
Venkatesh
,
V.
,
Luo
,
Y.
, and
Cheng
,
Y.
,
2011
, “
Cloud Manufacturing: A Computing and Service-Oriented Manufacturing Model
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
10
), pp.
1969
1976
.
8.
Wang
,
X. V.
, and
Xu
,
X.
,
2013
, “
ICMS: A Cloud-Based Manufacturing System
,”
Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing
,
W.
Li
and
J.
Mehnen
, eds.,
Springer
,
London, UK
, pp.
1
22
.
9.
Lu
,
Y.
,
Xu
,
J.
, and
Xu
,
X.
,
2013
, “
A New Paradigm Shift for Manufacturing Businesses
,”
ASME
Paper No. IMECE2013-62640.
10.
Helo
,
P.
,
Suorsa
,
M.
,
Hao
,
Y.
, and
Anussornnitisarn
,
P.
,
2014
, “
Toward a Cloud-Based Manufacturing Execution System for Distributed Manufacturing
,”
Comput. Ind.
,
65
(
4
), pp.
646
656
.
11.
Wang
,
L.
,
Shen
,
W.
, and
Lang
,
S.
,
2004
, “
Wise-ShopFloor: A Web-Based and Sensor-Driven e-Shop Floor
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
1
), pp.
56
60
.
12.
Wang
,
L.
,
Gao
,
R.
, and
Ragai
,
I.
,
2014
, “
An Integrated Cyber-Physical System for Cloud Manufacturing
,”
ASME
Paper No. MSEC2014-4171.
13.
Wang
,
X. V.
, and
Xu
,
X.
,
2013
, “
Cloud Machining Community: A Method to Use Socialized Production Resources for Outsourcing Machining Processes and Parts
,”
Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing
,
W.
Li
and
J.
Mehnen
, eds.,
Springer
,
London, UK
, pp.
49
76
.
14.
Qu
,
T.
,
Lei
,
S.
,
Chen
,
Y.
,
Wang
,
Z.
,
Luo
,
H.
, and
Huang
,
G.
,
2014
, “
Internet-of-Things-Enabled Smart Production Logistics Executions System Based on Cloud Manufacturing
,”
ASME
Paper No. MSEC2014-4194.
15.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
16.
Wang
,
L.
,
Wang
,
X. V.
,
Gao
,
L.
, and
Vancza
,
J.
,
2014
, “
A Cloud-Based Approach for WEEE Remanufacturing
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
409
412
.
17.
Wang
,
X. V.
,
Lopez
,
B. N.
,
Wang
,
L.
,
Li
,
J.
, and
Ijomah
,
W.
,
2014
, “
A Smart Cloud-Based System for the WEEE Recovery/Recycling
,”
ASME
Paper No. MSEC2014-4109.
18.
Lu
,
Y.
,
Xu
,
X.
, and
Xu
,
J.
,
2014
, “
Development of a Hybrid Manufacturing Cloud
,”
J. Manuf. Syst.
,
33
(
4
), pp.
551
566
.
19.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput. Aided Des.
,
59
, pp.
1
14
.
20.
Lu
,
Y.
,
Shao
,
Q.
,
Singh
,
C.
,
Xu
,
X.
, and
Ye
,
X.
,
2015
, “
Ontology for Manufacturing Resources in a Cloud Environment
,”
Int. J. Manuf. Res.
,
9
(
4
), pp.
448
469
.
21.
Wang
,
T.
,
Guo
,
S.
,
Lee
,
C.-G.
,
2014
, “
Manufacturing Task Semantic Modeling and Description in Cloud Manufacturing System
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
2017
2031
.
22.
ISO10303-224,
2006
, “
Industrial Automatic Systems and Integration-Product Data Representation and Exchange-Application Protocol: Mechanical Product Definition for Process Planning Using Machining Features
,” ISO, Geneva, Switzerland.
23.
Yu
,
J.
,
Zhou
,
Z.
, and
Xu
,
W.
,
2014
, “
Dynamic Modeling of Manufacturing Equipment Capability in Cloud Manufacturing
,”
ASME
Paper No. MSEC2014-4036.
24.
Zhang
,
L.
,
Guo
,
H.
,
Tao
,
F.
,
Luo
,
Y.
, and
Si
,
N.
,
2010
, “
Flexible Management of Resource Service Composition in Cloud Manufacturing
,”
2010
IEEE IEEM
, Macao, China, Dec. 7–10, pp.
2278
2282
.
25.
Yang
,
X.
,
Shi
,
G.
, and
Zhang
,
Z.
,
2014
, “
Collaboration of Large Equipment Complete Service Under Cloud Manufacturing Mode
,”
Int. J. Prod. Res.
,
52
(
2
), pp.
326
336
.
26.
Liu
,
N.
,
Li
,
X.
, and
Shen
,
W.
,
2014
, “
Multi-Granularity Resource Virtualization and Sharing Strategies in Cloud Manufacturing
,”
J. Network Comput. Appl.
,
46
, pp.
72
82
.
27.
Hu
,
A.
,
Zhang
,
L.
,
Tao
,
F.
, and
Luo
,
Y.
,
2012
, “
Resource Service Management of Cloud Manufacturing Based on Knowledge
,”
J. Tongji Univ. (Nat. Sci.)
,
40
(
7
), pp.
1093
1101
.
28.
Huang
,
B.
,
Li
,
C.
,
Yin
,
C.
, and
Zhao
,
X.
,
2013
, “
Cloud Manufacturing Service Platform for Small- and Medium-Sized Enterprises
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1261
1272
.
29.
Tao
,
F.
,
Hu
,
Y.
,
Zhao
,
D.
, and
Zhou
,
Z.
,
2009
, “
Study on Resource Service Match and Search in Manufacturing Grid System
,”
Int. J. Adv. Manuf. Technol.
,
43
(
3–4
), pp.
379
399
.
30.
Jiang
,
P.
, and
Cao
,
W.
,
2013
, “
An RFID-Driven Graphical Formalized Deduction for Describing the Time-Sensitive State and Position Changes of Work-in-Progress Material Flows in a Job-Shop Floor
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031009
.
31.
Li
,
Y.
,
Liu
,
X.
,
Gao
,
J. X.
, and
Maropoulos
,
P. G.
,
2012
, “
A Dynamic Feature Information Model for Integrated Manufacturing Planning and Optimization
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
167
170
.
32.
Choi
,
B. K.
,
Kim
,
D. H.
, and
Jerard
,
R. B.
,
1997
, “
C-Space Approach to Tool-Path Generation for Die and Mould Machining
,”
Comput. Aided Des.
,
29
(
9
), pp.
657
669
.
You do not currently have access to this content.