In the last decade, traditional tube expansion process has found an innovative application in oil and gas wells drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to monodiameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model, which predicts the drawing force for expansion, the stress field in expanded and pre-/postexpanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration, i.e., shape, size, and angle, was obtained, which can be used to achieve larger in situ expansion. It is found that mandrel with elliptical, hemispherical, and curved conical shapes has minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10 deg. However, further manipulation of shape parameters of the circular cross section mandrel yielded an improved efficiency. The drawing force required for expansion reduces by 7–10% having minimum dissipated energy during expansion. It is also found that these mandrels yield less reduction in tube thickness after expansion, which results in higher postexpansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by another 7%.

References

References
1.
Ngaile
,
G.
, and
Kinsey
,
B.
,
2011
, “
Advances in Plastic Forming of Metals
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
060301
.
2.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
3.
Almeida
,
B. P. P.
,
Alves
,
M. L.
,
Rosa
,
P. A. R.
,
Brito
,
A. G.
, and
Martins
,
P. A. F.
,
2006
, “
Expansion and Reduction of Thin-Walled Tubes Using a Die: Experimental and Theoretical Investigation
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1643
1652
.
4.
Koc
,
M.
, and
Altan
,
T.
,
2002
, “
Prediction of Forming Limits and Parameters in the Tube Hydroforming Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
123
138
.
5.
Palengat
,
M.
,
Chagnon
,
G.
,
Favier
,
D.
,
Louche
,
H.
,
Linardon
,
C.
, and
Plaideau
,
C.
,
2013
, “
Cold Drawing of 316L Stainless Steel Thin-Walled Tubes: Experiments and Finite Element Analysis
,”
Int. J. Mech. Sci.
,
70
, pp.
69
78
.
6.
Yang
,
J.
,
Luo
,
M.
,
Hua
,
Y.
, and
Lu
,
G.
,
2010
, “
Energy Absorption of Expansion Tubes Using a Conical–Cylindrical Die: Experiments and Numerical Simulation
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
716
725
.
7.
Binggui
,
X.
,
Yanping
,
Z.
,
Hui
,
W.
,
Hongwei
,
Y.
, and
Tao
,
J.
,
2009
, “
Application of Numerical Simulation in the Solid Expandable Tubular Repair for Casing Damaged Wells
,”
Pet. Explor. Dev.
,
36
(
5
), pp.
651
657
.
8.
De Pari
,
L.
, and
Misiolek
,
W. Z.
,
2012
, “
Numerical Modeling of Copper Tube Extrusion: Process and Eccentricity Analysis
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051005
.
9.
Fazli
,
A.
, and
Arezoo
,
B.
,
2014
, “
An Analytical Method for Prediction of Limiting Drawing Ratio for Redrawing Stages of Axisymmetric Deep Drawn Components
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021012
.
10.
Tang
,
B. T.
,
Wang
,
Q. L.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P. F.
,
2014
, “
Influence of Temperature and Deformation on Phase Transformation and Vickers Hardness in Tailored Tempering Process: Numerical and Experimental Verifications
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051018
.
11.
Kluz
,
K.
, and
Geskin
,
E. S.
,
2009
, “
High Strain, High Strain Rate Forming of Difficult to Deform Tubular Parts
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061009
.
12.
Bui
,
Q. H.
,
Bihamta
,
R.
,
Guillot
,
M.
,
Rahem
,
A.
, and
Fafard
,
M.
,
2011
, “
Effect of Cross Section Reduction on the Mechanical Properties of Aluminium Tubes Drawn With Variable Wall Thickness
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061004
.
13.
Filippov
,
A.
,
Mack
,
R.
,
Cook
,
L.
,
York
,
P.
,
Ring
,
L.
, and
McCoy
,
T.
,
1999
, “
Expandable Tubular Solutions
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
, Oct. 3–6, SPE Paper No. 56500.
14.
Carstens
,
C.
, and
Strittmatter
,
K.
,
2006
, “
Solid Expandable Tubular Technology: The Value of Planned Installations vs. Contingency
,”
SPE Drill. Completion
,
21
(
4
), pp.
279
286
.
15.
Kupresan
,
D.
,
Heathman
,
J.
, and
Radonjic
,
M.
,
2014
, “
Casing Expansion as a Promising Solution for Microannular Gas Migration
,”
SPE Drill. Completion
,
29
(
4
), pp.
366
371
.
16.
Campo
,
D.
,
Williams
,
C.
,
Filippov
,
A.
,
Cook
,
L.
,
Brisco
,
D.
,
Dean
,
B.
, and
Ring
,
L.
,
2003
, “
Monodiameter Drilling Liner—From Concept to Reality
,”
Proceedings of the SPE Drilling Conference
,
Amsterdam, The Netherlands
, Feb. 19–21, SPE Paper No. 79790.
17.
Klever
,
F. J.
,
2010
, “
A Design Strength Equation for Collapse of Expanded OCTG
,”
SPE Drill. Completion
,
25
(
3
), pp.
391
408
.
18.
Noel
,
G.
, and
Waddell
,
K.
,
2008
, “
Increasing the Application Realm of Solid Expandable Technology
,”
ASME
Paper No. IPC2008-64382.
19.
Al-Abri
,
O. S.
, and
Pervez
,
T.
,
2013
, “
Structural Behavior of Solid Expandable Tubular Undergoes Radial Expansion Process—Analytical, Numerical, and Experimental Approaches
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2980
2994
.
20.
Gao
,
S.-j.
,
Dong
,
C.-f.
,
Fu
,
A.-q.
,
Xiao
,
K.
, and
Li
,
X.-g.
,
2015
, “
Corrosion Behavior of the Expandable Tubular in Formation Water
,”
Int. J. Miner., Metall. Mater.
,
22
(
2
), pp.
149
156
.
21.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
22.
Oden
,
J. T.
, and
Martins
,
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
(
1–3
), pp.
527
634
.
23.
Neves
,
F. O.
,
Button
,
S. T.
,
Caminaga
,
C.
, and
Gentile
,
F. C.
,
2005
, “
Numerical and Experimental Analysis of Tube Drawing With Fixed Plug
,”
J. Braz. Soc. Mech. Sci. Eng.
,
27
(
4
), pp.
426
431
.
24.
Rubio
,
E. M.
,
2006
, “
Analytical Methods Application to the Study of Tube Drawing Processes With Fixed Conical Inner Plug: Slab and Upper Bound Methods
,”
J. Achiev. Mater. Manuf. Eng.
,
14
(
1–2
), pp.
119
130
.
25.
Celentano
,
D. J.
,
Rosales
,
D. A.
, and
Peña
,
J. A.
,
2011
, “
Simulation and Experimental Validation of Tube Sinking Drawing Processes
,”
Mater. Manuf. Processes
,
26
(
5
), pp.
770
780
.
26.
Béland
,
J.-F.
,
Fafard
,
M.
,
Rahem
,
A.
,
D'Amours
,
G.
, and
Côté
,
T.
,
2011
, “
Optimization on the Cold Drawing Process of 6063 Aluminium Tubes
,”
Appl. Math. Modell.
,
35
(
11
), pp.
5302
5313
.
27.
Kesavulu
,
P.
,
Reddy
,
G. R.
, and
Sreedhar
,
N.
,
2014
, “
Finite Element Analysis of Concave and Convex Die Contours in Wire Drawing Process
,”
Int. J. Emerging Technol. Adv. Eng.
,
4
(
9
), pp.
477
480
.
28.
Seibi
,
A. C.
,
Pervez
,
T.
,
Al-Hiddabi
,
S.
, and
Karrech
,
A.
,
2005
, “
Finite Element Modeling of a Solid Tubular Expansion—A Typical Well Engineering Application
,”
Proceedings of the Society of Petroleum Engineers (SPE) Annual Technical Conference and Exhibition
, SPE Paper No. 84943.
29.
Pervez
,
T.
,
Seibi
,
A. C.
, and
Karrech
,
A.
,
2005
, “
Simulation of Solid Tubular Expansion in Well Drilling Using Finite Element Method
,”
Pet. Sci. Technol.
,
23
(
7–8
), pp.
775
794
.
30.
DeLange
,
R.
,
Gandikota
,
R.
, and
Osburn
,
S.
,
2011
, “
A Major Advancement in Expandable Connections Performance, Enabling Reliable Gastight Expandable Connections
,”
SPE Drill. Completion
,
26
(
3
), pp.
412
418
.
31.
Karrech
,
A.
, and
Seibi
,
A.
,
2010
, “
Analytical Model for the Expansion of Tubes Under Tension
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
356
362
.
32.
Chakrabarty
,
J.
,
2006
,
Theory of Plasticity
,
3rd ed.
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
, Chap. 1.
You do not currently have access to this content.