This study is focused on the categorical analysis of flank wear mechanisms in end milling of aluminum alloy AA6061 with minimum quantity lubrication (MQL) conditions using nanofluid. Wear mechanisms for the water-based TiO2 nanofluid with a nanoparticle volume fraction of 1.5% are compared with conventional oil-based MQL (0.48 ml/min and 0.83 ml/min) using an uncoated cemented carbide insert. Micro-abrasion, micro-attrition, and adhesion wear leading to edge chipping are identified as the main wear mechanisms. Aluminum deposits on the tool flank surface are observed. Results show that the water-based nanofluid shows potential as a capable MQL cutting media, in terms of tool wear, replacing the conventional oil-based MQL.

References

References
1.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
, I
. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
2.
Nachtman
,
E. S.
, and
Kalpakjian
,
S.
,
1985
,
Lubricants and Lubrication in Metalworking Operations
,
Marcel Dekker
,
New York
.
3.
Marksberry
,
P. W.
, and
Jawahir
,
I. S.
,
2008
, “
A Comprehensive Tool-Wear/Tool-Life Performance Model in the Evaluation of NDM (Near Dry Machining) for Sustainable Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
878
886
.
4.
Lawal
,
S. A.
,
Choudhury
,
I. A.
, and
Nukman
,
Y.
,
2013
, “
Developments in the Formulation and Application of Vegetable Oil-Based Metalworking Fluids in Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1765
1776
.
5.
Filipovic
,
A.
,
Olson
,
W.
,
Pandit
,
S.
, and
Sutherland
,
J. W.
,
2000
, “
Modeling of Cutting Fluid System Dynamics
,”
2000 Japan–USA Symposium on Flexible Automation
,
ASME
, MED-Vol
8
, pp.
433
440
.
6.
Adler
,
D. P.
,
Hii
,
W. W. S.
,
Michalek
,
D. J.
, and
Sutherland
,
J. W.
,
2006
, “
Examining the Role of Cutting Fluids in Machining and Efforts to Address Associated Environmental/Health Concerns
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
23
58
.
7.
Sujova
,
E.
,
2012
, “
Contamination of the Working Air Via Metalworking Fluids Aerosols
,”
Eng. Rev.
,
32
(
1
), pp.
9
15
.
8.
Canter
,
N.
,
2003
, “
The Possibilities and Limitations of Dry Machining
,”
Tribol. Lubr. Technol.
,
59
(
11
), pp.
30
35
.
9.
Gaitonde
,
V. N.
,
Kamik
,
R. S.
, and
Davim
,
J. P.
,
2010
, “
Minimum Quantity Lubrication in Machining
,”
Sustainable Manufacturing
,
J. P.
Davim
, ed.,
Wiley
,
Hoboken, NJ
.
10.
Astkhov
,
V. P.
, and
Joksch
,
S.
,
2012
,
Metal Working Fluids for Cutting and Grinding—Fundamentals and Recent Advances
,
Woodhead Publishing Limited
,
Cambridge, UK
.
11.
Sharma
,
V. S.
,
Dogra
,
M.
, and
Suri
,
N. M.
,
2009
, “
Cooling Techniques for Improved Productivity in Turning
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
435
453
.
12.
Srikanth
,
K. S.
,
Jaisankar
,
V.
, and
Vasisht
,
J. S.
,
2014
, “
Evaluation of Tool Wear and Surface Finish of AISI 316l Stainless Steel Using Nano Cutting Environment
,”
Int. J. Mech. Prod. Eng.
,
2
(4), pp.
73
76
.
13.
Brnic
,
J.
,
Canadija
,
M.
,
Turkalj
,
G.
,
Lanc
,
D.
,
Pepelnjak
,
T.
, and
Barisic
,
B.
,
2009
, “
Tool Material Behavior at Elevated Temperatures
,”
Mater. Manuf. Processes
,
24
(
7–8
), pp.
758
762
.
14.
Deng
,
W. J.
,
Xia
,
W.
,
Li
,
C.
, and
Tang
,
Y.
,
2010
, “
Ultrafine Grained Material Produced by Machining
,”
Mater. Manuf. Processes
,
25
(
6
), pp.
355
359
.
15.
Kurniawan
,
N. M. D.
, and
Yusof
,
S. S.
,
2010
, “
Hard Machining of Stainless Steel Using Wiper Coated Carbide: Tool Life and Surface Integrity
,”
Mater. Manuf. Processes
,
25
(
6
), pp.
370
377
.
16.
Kotaiah
,
R. K.
,
Srinivas
,
J.
,
Babu
,
K. J.
, and
Kolla
,
S.
,
2010
, “
Prediction of Optimal Cutting States During Inward Turning: An Experimental Approach
,”
Mater. Manuf. Processes
,
25
(
6
), pp.
432
441
.
17.
Rao
,
S. N.
,
Satyanarayana
,
B.
, and
Venkatasubbaiah
,
K.
,
2011
, “
Experimental Estimation of Tool Wear and Cutting Temperatures in MQL Using Cutting Fluids With CNT Inclusion
,”
Int. J. Eng. Sci. Technol.
,
3
(
4
), pp.
2928
2931
.
18.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
19.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
20.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
21.
Krajnik
,
P.
,
Pusavec
,
F.
, and
Rashid
,
A.
,
2011
, “
Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies
,”
Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing
,
G.
Seliger
,
M. K.
Marwan
,
Khraisheh
, and
I. S.
,
Jawahir
, eds.,
Springer-Verlag
,
Berlin
.
22.
Reddy
,
N. S. K.
, and
Rao
,
P. V.
,
2006
, “
Experimental Investigation to Study the Effect of Solid Lubricants on Cutting Forces and Surface Quality in End Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
189
198
.
23.
Srikant
,
R. R.
,
Rao
,
D. N.
,
Subrahmanyam
,
M. S.
, and
Krishna
,
P. V.
,
2009
, “
Applicability of Cutting Fluids With Nanoparticle Inclusion as Coolants in Machining
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
2
), pp.
221
226
.
24.
Prabhu
,
S.
, and
Vinayagam
,
B. K.
,
2010
, “
Nano Surface Generation of Grinding Process Using Carbon Nano Tubes
,”
Sadhana
,
35
(
6
), pp.
747
760
.
25.
Lee
,
P. H.
,
Nam
,
T. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2010
, “
Environmentally-Friendly Nano-Fluid Minimum Quantity Lubrication (MQL) Meso-Scale Grinding Process Using Nano-Diamond Particles
,”
2010 International Conference on Manufacturing Automation
(
ICMA
’10)
IEEE Computer Society
,
Hong Kong
, Dec. 13–15, pp.
44
49
.
26.
Nam
,
T. S.
,
Lee
,
P. H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tools Manuf.
,
51
(
7
), pp.
649
652
.
27.
Park
,
K. H.
,
Ewald
,
B.
, and
Kwon
,
P. Y.
,
2011
, “
Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling
,”
ASME J. Tribol.
,
133
(
3
), p.
031803
.
28.
Sodavadia
,
K. P.
, and
Makwana
,
A. H.
,
2014
, “
Experimental Investigation on the Performance of Coconut Oil Based Nano Fluid as Lubricants During Turning of AISI 304 Austenitic Stainless Steel
,”
Int. J. Adv. Mech. Eng.
,
4
(
1
), pp.
55
60
.
29.
Shen
,
B.
,
Shih
,
A. J.
, and
Simon
,
C. T.
,
2008
, “
Application of Nanofluids in Minimum Quantity Lubrication Grinding
,”
Tribol. Trans.
,
51
(
6
), pp.
730
737
.
30.
Gu
,
Y.
,
Zhao
,
X.
,
Liu
,
Y.
, and
Lv
,
Y.
,
2014
, “
Preparation and Tribological Properties of Dual-Coated TiO2 Nano-Particles as Water-Based Lubricant Additives
,”
J. Nanomater.
,
2014
, p.
785680
.
31.
Xue
,
Q.
,
Liu
,
W.
, and
Zhang
,
Z.
,
1997
, “
Friction and Wear Properties of Surface-Modified TiO2 Nano-Particle as an Additive in Liquid Paraffin
,”
Wear
,
213
(
1–2
), pp.
29
32
.
32.
Ye
,
W.
,
Cheng
,
T.
,
Ye
,
Q.
,
Guo
,
X.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2003
, “
Preparation and Tribological Properties of Tetrafluorobenzoic Acid Modified TiO2 Nano-Particles as Lubricant Additives
,”
Mater. Sci. Eng.A
,
359
(
1–2
), pp.
82
85
.
33.
Qian
,
J.
,
Yin
,
X.
,
Wang
,
N.
,
Liu
,
L.
, and
Xing
,
J.
,
2012
, “
Preparation and Tribological Properties of Stearic Acid-Modified Hierarchical Anatase TiO2 Microcrystals
,”
Appl. Surf. Sci.
,
258
(
7
), pp.
2778
2782
.
34.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
35.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Measurement of Temperature Dependent Thermal Conductivity and Viscosity of TiO2–Water Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
706
714
.
36.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2012
, “
Comparative Assessment of Single and Two-Phase Models for Numerical Studies of Nanofluid Turbulent Forced Convection
,”
Int. J. Heat Fluid Flow
,
37
, pp.
136
146
.
37.
Ghavam
,
K.
,
Bagheriasl
,
R.
, and
Worswick
,
M. J.
,
2014
, “
Analysis of Nonisothermal Deep Drawing of Aluminum Alloy Sheet With Induced Anisotropy and Rate Sensitivity at Elevated Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011006
.
38.
Wang
,
X.
, and
Kwon
,
P. Y.
,
2014
, “
WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031006
.
39.
Attanasio
,
A.
,
Ceretti
,
E.
,
Giardini
,
C.
, and
Cappellini
,
C.
,
2014
, “
Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051012
.
40.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
41.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
,
San Francisco, CA
.
42.
Sattler
,
K. D.
,
2011
,
Handbook of Nanophysics, Nanoparticles and Quantum Dots
,
CRC Press
,
Boca Raton, FL
.
43.
Kadirgama
,
K.
,
Noor
,
M. M.
,
Zuki
,
N. M.
,
Rahman
,
M. M.
,
Rejab
,
M. R. M.
, and
Daud
,
R.
,
2008
, “
Optimization of Surface Roughness in end Milling on Mould Aluminium Alloys (AA6061-T6) Using Response Surface Method and Radian Basis Function Network
,”
Jordan J. Mech. Ind. Eng.
,
2
(
4
), pp.
209
214
.
44.
Gu
,
J.
,
Barber
,
G.
,
Tung
,
S.
, and
Gu
,
R.
,
1999
, “
Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts
,”
Wear
,
225–229
(
1
), pp.
273
284
.
45.
Zaima
,
S.
, and
Takatsuji
,
Y.
,
1977
, “
On the Flank Wear of Carbide Tool in Al–Si Cast Alloy Machining
,”
J. Jpn Inst. Light Metals
,
41
, pp.
1221
1228
.
46.
Hu
,
J.
, and
Chou
,
Y. K.
,
2007
, “
Characterizations of Cutting Tool Flank Wear-Land Contact
,”
Wear
,
263
(
7–12
), pp.
1454
1458
.
47.
Buhsmer
,
C. P.
, and
Crayton
,
P. H.
,
1971
, “
Carbon Self-Diffusion in Tungsten Carbide
,”
J. Mater. Sci.
,
6
(
7
), pp.
981
988
.
48.
Hwang
,
Y.
,
Lee
,
C.
,
Choi
,
Y.
,
Cheong
,
S.
,
Kim
,
D.
, and
Lee
,
K.
,
2011
, “
Effect of the Size and Morphology of Particles Dispersed in Nano-Oil on Friction Performance Between Rotating Discs
,”
J. Mech. Sci. Technol.
,
25
(
11
), pp.
2853
2857
.
You do not currently have access to this content.