Wire saws with fixed diamond abrasive are often used to cut hard and brittle materials owning to the wire saw's narrow kerf, low cutting force, and minimal material waste. Typically, the cutting force changes during the operation since the part diameter and the contact length between the wire saw and part (i.e., contact length) continuously change, even if the process parameters (i.e., wire saw velocity, part feed rate, part rotation speed, and wire saw tension) are fixed, leading to wire saw breakage, wafer collapse, and inferior surface roughness. This study addresses this issue by regulating the force via feedback control. The most significant process parameter affecting the normal force, namely, part feed rate, is taken as the control variable. A system identification routine is used to obtain the transfer function relating the normal force and commanded part feed rate and the model parameters are identified online. An adaptive force controller is designed, and simulation and experimental studies for SiC monocrystal wafer wire saw machining are conducted. The results show the dynamic model well characterizes the normal force generated when wire saw machining SiC monocrystal, and the adaptive controller can effectively track various normal reference force trajectories (i.e., constants, ramps, and sine waves). The experimental results demonstrate that the wire saw machining process with adaptive force control can improve the cutting productivity and significantly decrease wafer surface roughness as compared to the cutting process with a constant part feed rate.

References

References
1.
Dzurak
,
A.
,
2011
, “
Diamond and Silicon Converge
,”
Nature
,
479
(
3
), pp.
47
49
.
2.
Clark
,
W. I.
,
Shih
,
A. J.
,
Hardin
,
C. W.
,
Lemaster
,
R. L.
, and
McSpadden
,
S. B.
,
2003
, “
Fixed Abrasive Diamond Wire Machining—Part I: Process Monitoring and Wire Tension Force
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
523
532
.
3.
Du
,
G.
,
Zhou
,
L.
,
Rossetto
,
P.
, and
Wan
,
Y.
,
2007
, “
Hard Inclusions and Their Detrimental Effects on the Wire Sawing Process of Multicrystalline Silicon
,”
Sol. Energy Mater. Sol. Cells
,
91
(
18
), pp.
1743
1748
.
4.
Wang
,
W.
,
Liu.
,
Z. X.
,
Zhang
,
W.
,
Huang
,
Y. H.
, and
Allen
,
D. M.
,
2011
, “
Abrasive Electrochemical Multi-Wire Slicing of Solar Silicon Ingots Into Wafers
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
255
258
.
5.
Ishikawa
,
Y.
,
Yao
,
Y.-Z.
,
Sugawara
,
Y.
,
Sato
,
K.
,
Okamoto
,
Y.
,
Hayashi
,
N.
,
Dierre
,
B.
,
Watanabe
,
K.
, and
Sekiguchi
,
T.
,
2014
, “
Comparison of Slicing-Induced Damage in Hexagonal SiC by Wire Sawing With Loose Abrasive, Wire Sawing With Fixed Abrasive, and Electric Discharge Machining
,”
Jpn. J. Appl. Phys.
, Part 1,
53
(
7
), p.
071301
.
6.
Hardin
,
C. W.
,
Qu
,
J.
, and
Shih
,
A. J.
,
2004
, “
Fixed Abrasive Diamond Wire Saw Slicing of Single-Crystal Silicon Carbide Wafers
,”
Mater. Manuf. Processes
,
19
(
2
), pp.
355
367
.
7.
Watanabe
,
N.
,
Kondo
,
Y.
,
Ide
,
D.
,
Matsuki
,
T.
,
Takato
,
H.
, and
Sakata
,
I.
,
2010
, “
Characterization of Polycrystalline Silicon Wafers for Solar Cells Sliced With Novel Fixed-Abrasive Wire
,”
Prog. Photovoltaics: Res. Appl.
,
18
(
7
), pp.
485
490
.
8.
Yang
,
C.
,
Wu
,
H.
,
Melkote
,
S. N.
, and
Danluk
,
S.
,
2012
, “
Comparative Analysis of Fracture Strength of Slurry and Diamond Wire Sawn Multicrystalline Silicon Solar Wafer
,”
Adv. Eng. Mater.
,
15
(
5
), pp.
358
365
.
9.
Hwang
,
B.
,
Park
,
K.
,
Kim
,
H.-B.
,
Kim
,
K. H.
,
Bae
,
D.-S.
, and
Cho
,
Y.-R.
,
2012
, “
Effect of Tensile Properties on the Abrasive Wear of Steel Saw Wires Used for Silicon Ingot Slicing
,”
Wear
,
290–291
, pp.
94
98
.
10.
Maeda
,
H.
,
Takanable
,
R.
,
Takeda
,
A.
,
Matsuda
,
S.
, and
Kato
,
T.
,
2014
, “
High-Speed Slicing of SiC Ingot by High-Speed Multi-Wire Saw
,”
Mater. Sci. Forum
,
778–780
, pp.
771
775
.
11.
Dong
,
Z.
,
Cheng
,
H.
, and
Tam
,
H.-Y.
,
2012
, “
Investigation on Removal Features of Multidistribution Fixed Abrasive Diamond Pellets Used in the Polishing of SiC Mirrors
,”
Appl. Opt.
,
51
(
35
), pp.
8373
8382
.
12.
Bhagavat
,
S.
, and
Kao
,
I.
,
2006
, “
Theoretical Analysis on the Effects of Crystal Anisotropy on Wiresawing Process and Application to Wafer Slicing
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
531
541
.
13.
Cvetković
,
S.
,
Morsbach
,
C.
, and
Rissing
,
L.
,
2011
, “
Ultra-Precision Dicing and Wire Sawing of Silicon Carbide (SiC)
,”
Microelectron. Eng.
,
88
(
8
), pp.
2500
2504
.
14.
Lee
,
S. H.
,
2012
, “
Analysis of Ductile Mode and Brittle Transition of AFM Nanomachining of Silicon
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
71
79
.
15.
Yu
,
X.
,
Wang
,
P.
,
Li
,
X.
, and
Yang
,
D.
,
2012
, “
Thin Czochralski Silicon Solar Cells Based on Diamond Wire Sawing Technology
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
337
342
.
16.
Clark
,
W. I.
,
Shih
,
A. J.
,
Lemaster
,
R. L.
, and
McSpadden
,
S. B.
,
2003
, “
Fixed Abrasive Diamond Wire Machining—Part II: Experiment Design and Results
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
533
542
.
17.
Wu
,
H.
,
Melkote
,
S. N.
, and
Danyluk
,
S.
,
2013
, “
Effects of Carbide and Nitride Inclusions on Diamond Scribing of Multicrystalline Silicon for Solar Cells
,”
Precis. Eng.
,
37
(
2
), pp.
500
504
.
18.
Cheng
,
X.
,
Wei
,
X. T.
,
Yang
,
X. H.
, and
Gao
,
Y. B.
,
2014
, “
Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051013
.
19.
Li
,
W. C.
, and
Tsai
,
D. M.
,
2011
, “
Automatic Saw-Mark Detection in Multicrystalline Solar Wafer Images
,”
Sol. Energy Mater. Sol. Cells
,
95
(
8
), pp.
2206
2220
.
20.
Cao
,
L.
,
2009
, “
Research on the Hydraulic Control System of Diamond Wire Saw
,”
IEEE
International Conference on Automation and Logistics
,
Shenyang
,
China
, Aug. 5–7, pp.
652
657
.
21.
Zhu
,
L.
, and
Kao
,
I.
,
2005
, “
Galerkin-Based Modal Analysis on the Vibration of Wire–Slurry System in Wafer Slicing Using a Wiresaw
,”
J. Sound Vib.
,
283
(
3–5
), pp.
589
620
.
22.
Liedke
,
T.
, and
Kuna
,
M.
,
2011
, “
A Macroscopic Mechanical Model of the Wire Sawing Process
,”
Int. J. Mach. Tools Manuf.
,
51
(
9
), pp.
711
720
.
23.
Zhao
,
X.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2010
, “
Adaptive Extrusion Froce Control of Freeze-Form Extrusion Fabrication Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064504
.
24.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1971
, “
Problems of Identification and Control
,”
J. Math. Anal. Appl.
,
34
(
1
), pp.
90
113
.
You do not currently have access to this content.