Material removal mechanism depends on the material property and machining parameters during machining process. This paper investigates the brittle removal mechanism of ductile materials with ultrahigh-speed machining. Based on the theory of stress wave propagation, the prediction model of critical cutting speed for ultrahigh-speed machining is proposed. The predicted critical cutting speed values are then validated with ultrahigh-speed machining experiments of Inconel 718 and 7050-T7451 aluminum alloy at the cutting speeds range from 50 m/min to 8000 m/min. The experimental results show that fragmented chips are produced above the critical cutting speed of 7000 m/min for Inconel 718 and 5000 m/min for 7050-T7451 aluminum alloy. The scanning electron microscopy (SEM) micrographs of fragmented chip fracture surface and finished workpiece surface are analyzed. Large amounts of cleavage steps and brittle cracks are observed on the fragmented chip surface. With the brittle cracks remains, the finished surface quality of ultrahigh-speed machining is worse than that of high-speed machining. The results show that the material property undergoes ductile-to-brittle transition so the brittle regime machining of ductile materials can be implemented with ultrahigh-speed machining. Taking both the machining efficiency and machining quality into account, the ultrahigh-speed machining is recommended to apply in rough machining or semifinishing, while high-speed machining is recommended to apply in finishing process. In the end, the definition and essence of ultrahigh-speed machining are concluded. This paper is enticing from both the engineering and the analytical perspectives aimed at revealing the mechanism of ultrahigh-speed machining and optimizing the machining parameters.

References

References
1.
Pawade
,
R. S.
, and
Joshi
,
S. S.
,
2011
, “
Mechanism of Chip Formation in High-Speed Turning of Inconel 718
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
132
152
.
2.
Chevrier
,
P.
,
Tidu
,
A.
,
Bolle
,
B.
,
Cezard
,
P.
, and
Tinnes
,
J. P.
,
2003
, “
Investigation of Surface Integrity in High Speed End Milling of a Low Alloyed Steel
,”
Int. J. Mach. Tools Manuf.
,
43
(
11
), pp.
1135
1142
.
3.
Ekinovic
,
S.
,
Dolinsek
,
S.
, and
Jawahir
,
I. S.
,
2004
, “
Some Observations of the Chip Formation Process and the White Layer Formation in High Speed Milling of Hardened Steel
,”
Mach. Sci. Technol.
,
8
(
2
), pp.
327
340
.
4.
Guo
,
Y. B.
, and
Yen
,
D. W.
,
2004
, “
A FEM Study on Mechanisms of Discontinuous Chip Formation in Hard Machining
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1350
1356
.
5.
Neo
,
W. K.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2012
, “
A Review on the Current Research Trends in Ductile Regime Machining
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
465
480
.
6.
Mahalingam
,
S.
,
Flewitt
,
P. E. J.
, and
Knott
,
J. F.
,
2013
, “
The Ductile-Brittle Transition for Nominally Pure Polycrystalline Nickel
,”
Mater. Sci. Eng., A
,
564
, pp.
342
350
.
7.
Zhou
,
L. B.
,
Shimizu
,
J.
,
Muroya
,
A.
, and
Eda
,
H.
,
2003
, “
Material Removal Mechanism Beyond Plastic Wave Propagation Rate
,”
Precis. Eng.
,
27
(
2
), pp.
109
116
.
8.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile-Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
184
189
.
9.
Arif
,
M.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2011
, “
Ultraprecision Ductile Mode Machining of Glass by Micromilling Process
,”
J. Manuf. Processes
,
13
(
1
), pp.
50
59
.
10.
Cheng
,
X.
,
Wei
,
X. T.
,
Yang
,
X. H.
, and
Guo
,
Y. B.
,
2014
, “
Unified Criterion for Brittle-Ductile Transition in Mechanical Microcutting of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051013
.
11.
Kalyanasundaram
,
D.
,
Schmidt
,
A.
,
Molian
,
P.
, and
Shrotriya
,
P.
,
2014
, “
Hybrid CO2 Laser/Waterjet Machining of Polycrystalline Diamond Substrate: Material Separation Through Transformation Induced Controlled Fracture
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041001
.
12.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
1989
,
Mechanical Engineering Design
,
5th ed.
,
McGraw-Hill
,
New York
.
13.
Astakhov
,
V. P.
, and
Xiao
,
X. R.
,
2008
, “
A Methodology for Practical Cutting Force Evaluation Based on the Energy Spent in the Cutting System
,”
Mach. Sci. Technol.
,
12
(
3
), pp.
325
347
.
14.
Wang
,
B.
,
Liu
,
Z. Q.
, and
Yang
,
Q. B.
,
2013
, “
Investigations of Yield Stress, Fracture Toughness, and Energy Distribution in High Speed Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
1
8
.
15.
List
,
G.
,
Sutter
,
G.
,
Bi
,
X. F.
,
Molinari
,
A.
, and
Bouthiche
,
A.
,
2013
, “
Strain, Strain Rate and Velocity Field Determination at Very High Cutting Speed
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
693
699
.
16.
Leopold
,
J.
,
Schmidt
,
G.
, and
Gunther
,
H.
,
2003
, “
Metal Cutting-Investigation With a New 3D Visioplasticity Method
,”
6th CIRP International Workshop of Modelling of Machining Operations
, McMaster University, Hamilton, Canada.
17.
Poulachon
,
G.
,
Moisan
,
A. L.
, and
Jawahir
,
I. S.
,
2007
, “
Evaluation of Chip Morphology in Hard Turning Using Constitutive Models and Material Property Data
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
41
47
.
18.
Germain
,
G.
,
Morel
,
A.
, and
Braham-Bouchnak
,
T.
,
2013
, “
Identification of Material Constitutive Laws Representative of Machining Conditions for Two Titanium Alloys: Ti6Al4V and Ti555-3
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
031002
.
19.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti-6Al-4V Titanium Alloy—Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
37
43
.
20.
Wu
,
H. B.
, and
To
,
S.
,
2015
, “
Serrated Chip Formation and Their Adiabatic Analysis by Using the Constitutive Model of Titanium Alloy in High Speed Cutting
,”
J. Alloys Compd.
,
629
, pp.
368
373
.
21.
Von Karman
,
T.
, and
Duwez
,
P.
,
1950
, “
The Propagation of Plastic Deformation in Solids
,”
J. Appl. Phys.
,
21
(
10
), pp.
987
994
.
22.
Klepaczko
,
J. R.
, and
Klósak
,
M.
,
1999
, “
Numerical Study of the Critical Impact Velocity in Shear
,”
Eur. J. Mech. A/Solids
,
18
(
1
), pp.
93
113
.
23.
DeMange
,
J. J.
,
Prakash
,
V.
, and
Pereira
,
J. M.
,
2009
, “
Effects of Material Microstructure on Blunt Projectile Penetration of a Nickel-Based Super Alloy
,”
Int. J. Impact Eng.
,
36
(
8
), pp.
1027
1043
.
24.
Wu
,
B.
,
Li
,
M. Q.
, and
Ma
,
D. W.
,
2012
, “
The Flow Behavior and Constitutive Equations in Isothermal Compression of 7050 Aluminum Alloy
,”
Mater. Sci. Eng., A
,
542
, pp.
79
87
.
25.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
The Mechanisms of Chip Formation in Machining Hardened Steels
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
528
535
.
26.
Sutter
,
G.
,
2005
, “
Chip Geometries During High-Speed Machining for Orthogonal Cutting Condition
,”
Int. J. Mach. Tools Manuf.
,
45
(
6
), pp.
719
726
.
27.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
28.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2014
, “
Serrated Chip Formation Mechanism Based on Mixed Mode of Ductile Fracture and Adiabatic Shear
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
2
), pp.
181
190
.
29.
Buda
,
J.
,
1972
, “
New Methods in the Study of Plastic Deformation in the Cutting Zone
,”
CIRP Ann.-Manuf. Technol.
,
21
, pp.
17
18
.
30.
Liu
,
Z. Q.
, and
Su
,
G. S.
,
2012
, “
Characteristics of Chip Evolution With Elevating Cutting Speed From Low to Very High
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
82
85
.
31.
Su
,
G. S.
, and
Liu
,
Z. Q.
,
2013
, “
Analytical and Experimental Study on Formation of Concentrated Shear Band of Saw Tooth Chip in High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1735
1740
.
You do not currently have access to this content.