A new one-sided joining method, friction stirring blind riveting (FSBR) was successfully implemented to form lap-shear joints for dissimilar metals from pairs of 3.05 mm thick cast Mg AM60, rolled 1.5 mm thick Al AA6022, and extruded 3.15 mm thick Al AA6082 specimens. The concept of this process is riveting the two workpieces with reduced force under frictional heat and fastening the workpieces through blind riveting once the rivet is fully inserted. In this research, the process was experimentally analyzed and optimized for four joint combinations. It was demonstrated that switching the positions of Mg and Al alloy specimens has a significant effect on the process window and maximum tensile load of the joints. Three quality issues of the FSBR joints were observed and discussed. During tensile testing, the sheet closer to the rivet tail work-hardens due to tail forming process but has worse loading condition than the sheet closer to the rivet head. For AA6xxx sheets, precipitate hardening due to frictional heat is another strengthening mechanism in FSBR compared to the conventional riveting process, which leads to higher tensile loads in FSBR joints.

References

References
1.
Haferkamp
,
H.
,
Niemeyer
,
M.
,
Dilthey
,
U.
, and
Trager
,
G.
,
2000
, “
Laser and Electron Beam Welding of Magnesium Materials
,”
Weld. Cutting
,
52
(
8
), pp.
178
180
.
2.
Wang
,
J.
,
Lu
,
R.
,
Qin
,
D.
,
Huang
,
X.
, and
Pan
,
F.
,
2013
, “
A Study of the Ultrahigh Damping Capacities in Mg-Mn Alloys
,”
Mater. Sci. Eng. A
,
560
, pp.
667
671
.
3.
Mordike
,
B. L.
, and
Ebert
,
T.
,
2001
, “
Magnesium: Properties-Applications-Potential
,”
Mater. Sci. Eng. A
,
302
(
1
), pp.
37
45
.
4.
Abu-Farha
,
F.
,
Verma
,
R.
, and
Hector
,
L. G.
, Jr.
,
2012
, “
High Temperature Composite Forming Limit Diagrams of Four Magnesium AZ31B Sheets Obtained by Pneumatic Stretching
,”
J. Mater. Process. Technol.
,
212
(
6
), pp.
1414
1429
.
5.
Hanko
,
G.
,
Antrekowitsch
,
H.
, and
Ebner
,
P.
,
2002
, “
Recycling Automotive Magnesium Scrap
,”
JOM
,
54
(
2
), pp.
51
54
.
6.
Polmear
,
I. J.
,
1995
,
Light Alloys: Metallurgy of the Light Metals
,
3rd ed.
,
Arnold
,
London
, p.
207
.
7.
Cao
,
X.
,
Jahazi
,
M.
,
Immarigeon
,
J. P.
, and
Wallace
,
W.
,
2006
, “
A Review of Laser Welding Techniques for Magnesium Alloys
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
188
204
.
8.
Liu
,
L.
, and
Chen
,
M.
,
2011
, “
Interactions Between Laser and Arc Plasma During Laser Arc Hybrid Welding of Magnesium Alloy
,”
Opt. Lasers Eng.
,
49
(
9–10
), pp.
1224
1231
.
9.
Suhuddin
,
U. F. H. R.
,
Mironov
,
S.
,
Sato
,
Y. S.
,
Kokawa
,
H.
, and
Lee
,
C.-W.
,
2009
, “
Grain Structure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy
,”
Acta Mater.
,
57
(
18
), pp.
5406
5418
.
10.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2011
, “
Influence of Ultrasonic Spot Welding on Microstructure in a Magnesium Alloy
,”
Scr. Mater.
,
65
(
10
), pp.
911
914
.
11.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Verma
,
R.
, and
Mishra
,
R. K.
,
2012
, “
Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
543
, pp.
200
209
.
12.
Han
,
G.
,
Wang
,
M.
,
Liu
,
Z.
, and
Wang
,
P.-C.
,
2013
, “
A New Joining Process for Magnesium Alloys: Rotation Friction Drilling Riveting
,”
ASME J. Manuf. Sci. Eng.
135
(
3
), p.
031012
.
13.
Marya
,
M.
,
Edwards
,
G.
,
Marya
,
S.
, and
Olson
,
D. L.
,
2001
, “
Fundamentals in the Fusion Welding of Magnesium and Its Alloys
,”
Proceedings of the 7th JWS International Symposium
, Kobe, Japan, pp.
597
602
.
14.
Carboni
,
M.
, and
Moroni
,
F.
,
2011
, “
Tensile-Shear Fatigue Behavior of Aluminum and Magnesium Lap-Joints Obtained by Ultrasonic Welding and Adhesive Bonding
,”
Procedia Eng.
,
10
, pp.
3561
3566
.
15.
Chowdhury
,
S. H.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Cao
,
X.
, and
Wanjara
,
P.
,
2013
, “
Lap Shear Strength and Fatigue Behavior of Friction Stir Spot Welded Dissimilar Magnesium-to-Aluminum Joints With Adhesive
,”
Mater. Sci. Eng. A
,
562
, pp.
53
60
.
16.
Brandal
,
G.
,
Satoh
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2013
, “
Beneficial Interface Geometry for Laser Joining of NiTi to Stainless Steel Wires
,”
ASME J. Manuf. Sci. Eng.
135
(
6
), p.
061006
.
17.
Duan
,
H.
,
Han
,
G.
,
Wang
,
M.
,
Zhang
,
X.
,
Liu
,
Z.
, and
Liu
,
Z.
,
2014
, “
Rotation Friction Pressing Riveting of AZ31 Magnesium Alloy Sheet
,”
Mater. Des.
,
54
, pp.
414
424
.
18.
Durandet
,
Y.
,
Deam
,
R.
,
Beer
,
A.
,
Song
,
W.
, and
Blacket
,
S.
,
2010
, “
Laser Assisted Self-Pierce Riveting of AZ31 Magnesium Alloy Strips
,”
Mater. Des.
,
31
(Suppl.
1
), pp.
S13
S16
.
19.
Li
,
Y.
,
Wei
,
Z.
,
Wang
,
Z.
, and
Li
,
Y.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
20.
Wang
,
P. C.
, and
Stevenson
,
R.
,
2007
, “
Friction Stir Rivet and Method of Joining
,” U.S. Patent No. 7862271.
21.
Gao
,
D.
,
Ersoy
,
U.
,
Stevenson
,
R.
, and
Wang
,
P. C.
,
2009
, “
A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061002
.
22.
Lathabai
,
S.
,
Tyagi
,
V.
,
Ritchie
,
D.
,
Kearney
,
T.
, and
Finnin
,
B.
,
2011
, “
Friction Stir Blind Riveting: A Novel Joining Process For Automotive Light Alloys
,” SAE Paper No. 2011-01-0477.
23.
Jonckheere
,
C.
,
Meester
,
B. D.
,
Denquin
,
A.
, and
Simar
,
A.
,
2013
, “
Torque, Temperature and Hardening Precipitation Evolution in Dissimilar Friction Stir Welds Between 6061-T6 and 2014-T6 Aluminum Alloys
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
826
837
.
24.
Min
,
J. Y.
,
Li
,
J. J.
,
Carlson
,
B. E.
,
Li
,
Y. Q.
, and
Lin
,
J. P.
,
2014
, “
Mechanical Property of Al Alloy Joints by Friction Stir Blind Riveting
,”
Procedia Eng.
,
81
, pp.
2036
2041
.
You do not currently have access to this content.