Friction stir welding (FSW) was applied in the current study in order to butt weld AZ31B-H24 alloy plates. Creep tests were conducted both on the parent material and on the friction stir welded specimens. The microstructure of the AZ31B alloy was found to be unstable under creep conditions. In the case of friction stir welded AZ31B, the material undergoes during FSW both recrystallization and grain growth, then the exposure to temperature during creep yields an extensive additional grain growth. On the other hand, twinning and twin-induced recrystallization occur as well during creep so that ultrafine grains are being created concurrently.

References

References
1.
Deng
,
J.
,
Lin
,
Y. C.
,
Li
,
S. S.
,
Chen
,
J.
, and
Ding
,
Y.
,
2013
, “
Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy
,”
Mater. Des.
,
49
, pp.
209
219
.10.1016/j.matdes.2013.01.023
2.
Tian
,
S.
,
Wang
,
L.
,
Sohn
,
K. Y.
,
Kim
,
K. H.
,
Xu
,
Y.
, and
Hu
,
Z.
,
2006
, “
Microstructure Evolution and Deformation Features of AZ31 Mg-Alloy During Creep
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
309
316
.10.1016/j.msea.2005.10.015
3.
Tan
,
J. C.
, and
Tan
,
M. J.
,
2003
, “
Superplasticity and Grain Boundary Sliding Characteristics in Two Stage Deformation of Mg–3Al–1Zn Alloy Sheet
,”
Mater. Sci. Eng. A
,
339
(
1–2
), pp.
81
89
.10.1016/S0921-5093(02)00097-7
4.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Verma
,
R.
, and
Mishra
,
R. K.
,
2012
, “
Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
543
, pp.
200
209
.10.1016/j.msea.2012.02.075
5.
Pareek
,
M.
,
Polar
,
A.
,
Rumiche
,
F.
, and
Indacochea
,
J. E.
,
2007
, “
Metallurgical Evaluation of AZ31B-H24 Magnesium Alloy Friction Stir Welds
,”
J. Mater. Eng. Perform.
,
16
(
5
), pp.
655
662
.10.1007/s11665-007-9084-5
6.
Darras
,
B. M.
,
Khraisheh
,
M. K.
,
Abu-Farha
,
F. K.
, and
Omar
,
M. A.
,
2007
, “
Friction Stir Processing of Commercial AZ31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
77
81
.10.1016/j.jmatprotec.2007.03.045
7.
Chang
,
C. I.
,
Lee
,
C. J.
, and
Huang
,
J. C.
,
2004
, “
Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloy
,”
Scr. Mater.
,
51
(
6
), pp.
509
514
.10.1016/j.scriptamat.2004.05.043
8.
Fukumoto
,
S.
,
Yamamoto
,
D.
,
Tomita
,
T.
,
Okita
,
K.
,
Tsubakino
,
H.
, and
Yamamoto
,
A.
,
2007
, “
Effect of Post Weld Heat Treatment on Microstructure and Mechanical Properties of AZ31B Friction Welded Joint
,”
Mater. Trans.
,
48
(
1
), pp.
44
52
.10.2320/matertrans.48.44
9.
Suhuddin
,
U. F. H. R.
,
Mironov
,
S.
,
Sato
,
Y. S.
,
Kokawa
,
H.
, and
Lee
,
C. W.
,
2009
, “
Grain Structure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy
,”
Acta Mater.
,
57
(
18
), pp.
5406
5418
.10.1016/j.actamat.2009.07.041
10.
Fukumoto
,
S.
,
Tanaka
,
S.
,
Ono
,
T.
,
Tsubakino
,
H.
,
Tomita
,
T.
,
Aritoshi
,
M.
, and
Okita
,
K.
,
2006
, “
Microstructure Development in Friction Welded AZ31 Magnesium Alloy
,”
Mater. Trans.
,
47
(
4
), pp.
1071
1076
.10.2320/matertrans.47.1071
11.
Regev
,
M.
, and
Spigarelli
,
S.
,
2013
, “
Plastic Deformation Mechanisms of Base Material and Friction Stir Welded AZ31B-H24 Magnesium Alloy
,”
Mater. Sci. Appl.
,
4
(
6
), pp.
357
364
.10.4236/msa.2013.46046
12.
Regev
,
M.
, and
Spigarelli
,
S.
,
2013
, “
Plastic Deformation Mechanisms Operating in Parent Metal and Friction Stir Welded AZ31B Magnesium Alloy
,”
7th Asia Pacific IIW International Conference
, Research Publishing, Singapore, pp.
523
527
.
13.
Fehrenbacher
,
A.
,
Schmale
,
J. R.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021009
.10.1115/1.4026115
14.
Fehrenbacher
,
A.
,
Smith
,
C. B.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2014
, “
Combined Temperature and Force Control for Robotic Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021007
.10.1115/1.4025912
15.
Galiyev
,
A.
,
Kaibyshev
,
R.
, and
Gottstein
,
G.
,
2001
, “
Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60
,”
Acta Mater.
,
49
(
7
), pp.
1199
1207
.10.1016/S1359-6454(01)00020-9
16.
Sitdikov
,
O.
,
Kaibyshev
,
R.
, and
Sakai
,
T.
,
2003
, “
Dynamic Recrystallization Based on Twinning in Coarse-Grained Mg
,”
Mater. Sci. Forum
,
419–422
, pp.
521
526
.10.4028/www.scientific.net/MSF.419-422.521
17.
Spigarelli
,
S.
,
Ruano
,
O. A.
,
Mehtedi
,
M. El.
, and
del Valle
,
J. A.
,
2013
, “
High Temperature Deformation and Microstructural Instability in AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
570
, pp.
135
148
.10.1016/j.msea.2013.01.060
18.
Spigarelli
,
S.
,
Regev
,
M.
,
Mehtedi
,
M. El.
,
Quercetti
,
G.
, and
Cabibbo
,
M.
,
2011
, “
Analysis of the Effect of Friction Stir Welding on the Minimum Creep Rate of a Mg–3%Al–1%Zn Alloy
,”
Scr. Mater.
,
65
(
7
), pp.
626
629
.10.1016/j.scriptamat.2011.06.042
You do not currently have access to this content.