In this study, a coupled thermomechanical model has been developed for the plunge stage of friction-stir welding (FSW) for joining dissimilar Al 6061 to TRIP steel. Governing equations of mass, momentum, and energy have been formulated for the bulk material and the interface, respectively. Generalized material properties defined with the field variable α are introduced for material identification at different regions. Local instant formulation based on binary phase flow theories has been proposed for developing conservation equations at the interface. These analytical derivations are then implemented into a finite-element model for numerical simulations. In the early stage of plunging, the estimated axial force correlates well with the experimental results, where a short plateau can be observed before the final peak occurs. Discrepancies at the later stage can be attributed to different experimental configurations and related simplified model assumptions.

References

References
1.
Da Silva
,
A.
,
Aldanondo
,
E.
,
Alvarez
,
P.
,
Arruti
,
E.
, and
Echeverria
,
A.
,
2010
, “
Friction Stir Spot Welding of AA 1050 Al Alloy and Hot Stamped Boron Steel (22MnB5)
,”
Sci. Technol. Weld. Joining
,
15
(
8
), pp.
682
687
.
2.
Mustafa
,
F. F.
,
Kadhym
,
A. H.
, and
Yahya
,
H. H.
,
2015
, “
Tool Geometries Optimization for Friction Stir Welding of AA6061-T6 Aluminum Alloy T-Joint Using Taguchi Method to Improve the Mechanical Behavior
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031018
.
3.
Fehrenbacher
,
A.
,
Smith
,
C. B.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2014
, “
Combined Temperature and Force Control for Robotic Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021007
.
4.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2014
, “
Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel
,”
Mater. Des.
,
59
, pp.
50
62
.
5.
Uzun
,
H.
,
Dalle Donne
,
C.
,
Argagnotto
,
A.
,
Ghidini
,
T.
, and
Gambaro
,
C.
,
2005
, “
Friction Stir Welding of Dissimilar Al 6013-T4 To X5CrNi18-10 Stainless Steel
,”
Mater. Des.
,
26
(
1
), pp.
41
46
.
6.
Ghosh
,
M.
,
Kar
,
A.
,
Kumar
,
K.
, and
Kailas
,
S.
,
2012
, “
Structural Characterisation of Reaction Zone for Friction Stir Welded Aluminium–Stainless Steel Joint
,”
Mater. Technol.
,
27
(
2
), pp.
169
172
.
7.
Tanaka
,
T.
,
Morishige
,
T.
, and
Hirata
,
T.
,
2009
, “
Comprehensive Analysis of Joint Strength for Dissimilar Friction Stir Welds of Mild Steel to Aluminum Alloys
,”
Scr. Mater.
,
61
(
7
), pp.
756
759
.
8.
Lee
,
W.-B.
,
Schmuecker
,
M.
,
Mercardo
,
U. A.
,
Biallas
,
G.
, and
Jung
,
S.-B.
,
2006
, “
Interfacial Reaction in Steel–Aluminum Joints Made by Friction Stir Welding
,”
Scr. Mater.
,
55
(
4
), pp.
355
358
.
9.
Chen
,
C. M.
, and
Kovacevic
,
R.
,
2004
, “
Joining of Al 6061 Alloy to AISI 1018 Steel by Combined Effects of Fusion and Solid State Welding
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1205
1214
.
10.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng.
,
50
(
1–2
), pp.
1
78
.
11.
Lienert
,
T.
,
Stellwag
,
W.
,
Grimmett
,
B.
, and
Warke
,
R.
,
2003
, “
Friction Stir Welding Studies on Mild Steel
,”
Weld. J.
,
82
(
1
), pp.
1-S
9-S
.
12.
Thomas
,
W.
,
Threadgill
,
P.
, and
Nicholas
,
E.
,
1999
, “
Feasibility of Friction Stir Welding Steel
,”
Sci. Technol. Weld. Joining
,
4
(
6
), pp.
365
372
.
13.
Mandal
,
S.
, and
Williamson
,
K.
,
2006
, “
A Thermomechanical Hot Channel Approach for Friction Stir Welding
,”
J. Mater. Process. Technol.
,
174
(
1
), pp.
190
194
.
14.
Trimble
,
D.
,
Monaghan
,
J.
, and
O'Donnell
,
G.
,
2012
, “
Force Generation During Friction Stir Welding of AA2024-T3
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
9
12
.
15.
Yu
,
M.
,
Li
,
W.
,
Li
,
J.
, and
Chao
,
Y.
,
2012
, “
Modeling of Entire Friction Stir Welding Process by Explicit Finite Element Method
,”
Mater. Sci. Technol.
,
28
(
7
), pp.
812
817
.
16.
Mandal
,
S.
,
Rice
,
J.
, and
Elmustafa
,
A.
,
2008
, “
Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
203
(
1
), pp.
411
419
.
17.
Ulysse
,
P.
,
2002
, “
Three-Dimensional Modeling of the Friction Stir-Welding Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1549
1557
.
18.
Nandan
,
R.
,
Roy
,
G.
,
Lienert
,
T.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.
19.
Nandan
,
R.
,
Debroy
,
T.
, and
Bhadeshia
,
H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
20.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
,
2006
, “
A Continuum Based FEM Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng., A
,
419
(
1
), pp.
389
396
.
21.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.
22.
Li
,
K.
,
Aidun
,
D.
, and
Marzocca
,
P.
,
2009
,
Time-Varying Functionally Graded Material Thermal Modeling of Friction Stir Welding Joint of Dissimilar Metals
,
ASM International
,
Materials Park, OH
, pp.
731
735
.
23.
Torres
,
E.
,
2012
, “
CFD Modeling of Dissimilar Aluminum–Steel Friction Stir Welds
,”
9th International Conference on Trends in Welding Research
, Chicago, IL, pp.
604
610
.
24.
Ishii
,
M.
,
1975
, “
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,” NASA STI/Recon Technical Report A, Technical Report No. 75, p.
29657
.
25.
Ishii
,
M.
,
Hibiki
,
T.
, and
SpringerLink
,
2006
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
26.
Kuykendall
,
K.
,
Nelson
,
T.
, and
Sorensen
,
C.
,
2013
, “
On the Selection of Constitutive Laws Used in Modeling Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
74
85
.
27.
Adibi-Sedeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
,
2003
, “
Extension of Oxley's Analysis of Machining to Use Different Material Models
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
656
666
.
28.
Van Slycken
,
J.
,
Verleysen
,
P.
,
Degrieck
,
J.
,
Samek
,
L.
, and
De Cooman
,
B.
,
2006
, “
High-Strain-Rate Behavior of Low-Alloy Multiphase Aluminum- and Silicon-Based Transformation-Induced Plasticity Steels
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1527
1539
.
29.
Park
,
K.
,
2009
, “
Development and Analysis of Ultrasonic Assisted Friction Stir Welding Process
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
30.
Stone
,
H.
,
1990
, “
A Simple Derivation of the Time‐Dependent Convective–Diffusion Equation for Surfactant Transport Along a Deforming Interface
,”
Phys. Fluids A
,
2
(
1
), pp.
111
112
.
31.
Aris
,
R.
,
1990
,
Vectors, Tensors and the Basic Equations of Fluid Mechanics
,
Courier Dover Publications
, Mineola, NY.
32.
Scriven
,
L. E.
,
1960
, “
Dynamics of a Fluid Interface Equation of Motion for Newtonian Surface Fluids
,”
Chem. Eng. Sci.
,
12
(
2
), pp.
98
108
.
33.
Girifalco
,
L.
, and
Good
,
R.
,
1957
, “
A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension
,”
J. Phys. Chem.
,
61
(
7
), pp.
904
909
.
34.
Bainbridge
,
I.
, and
Taylor
,
J.
,
2013
, “
The Surface Tension of Pure Aluminum and Aluminum Alloys
,”
Metall. Mater. Trans. A
,
44
(
8
), pp.
3901
3909
.
35.
Su
,
Y.
,
Li
,
Z.
, and
Mills
,
K. C.
,
2005
, “
Equation to Estimate the Surface Tensions of Stainless Steels
,”
J. Mater. Sci.
,
40
(
9–10
), pp.
2201
2205
.
36.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.
37.
Nandan
,
R.
,
Roy
,
G.
,
Lienert
,
T.
, and
DebRoy
,
T.
,
2006
, “
Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel
,”
Sci. Technol. Weld. Joining
,
11
(
5
), pp.
526
537
.
38.
Soundararajan
,
V.
,
Zekovic
,
S.
, and
Kovacevic
,
R.
,
2005
, “
Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061
,”
Int. J. Mach. Tools Manuf.
,
45
(
14
), pp.
1577
1587
.
39.
Atharifar
,
H.
,
Lin
,
D.
, and
Kovacevic
,
R.
,
2009
, “
Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding
,”
J. Mater. Eng. Perform.
,
18
(
4
), pp.
339
350
.
40.
Wang
,
H.
,
Colegrove
,
P. A.
, and
dos Santos
,
J. F.
,
2013
, “
Numerical Investigation of the Tool Contact Condition During Friction Stir Welding of Aerospace Aluminium Alloy
,”
Comput. Mater. Sci.
,
71
, pp.
101
108
.
41.
Nandan
,
R.
,
Roy
,
G.
, and
Debroy
,
T.
,
2006
, “
Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding
,”
Metall. Mater. Trans. A
,
37
(
4
), pp.
1247
1259
.
42.
Arora
,
A.
,
Nandan
,
R.
,
Reynolds
,
A.
, and
DebRoy
,
T.
,
2009
, “
Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments
,”
Scr. Mater.
,
60
(
1
), pp.
13
16
.
43.
Arora
,
A.
,
De
,
A.
, and
DebRoy
,
T.
,
2011
, “
Toward Optimum Friction Stir Welding Tool Shoulder Diameter
,”
Scr. Mater.
,
64
(
1
), pp.
9
12
.
44.
Nandan
,
R.
,
Lienert
,
T.
, and
DebRoy
,
T.
,
2008
, “
Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti–6Al–4V Alloy
,”
Int. J. Mater. Res.
,
99
(
4
), pp.
434
444
.
45.
Kong
,
H.
, and
Ashby
,
M.
,
1991
, “
Friction-Heating Maps and Their Applications
,”
MRS Bull.
,
16
(
10
), pp.
41
48
.
You do not currently have access to this content.