The present paper deals with the generation of hard layers in the vicinity of frictional interfaces in metal forming processes. The primary objective of the paper is to introduce a general approach to relate the strain rate intensity factor and parameters that characterize the microstructure and thickness of such layers. This approach is used in conjunction with axisymmetric direct extrusion of an AZ31 alloy. The thickness of the hard layer is determined experimentally. Also determined is the distribution of average grain size and hardness near the friction surface. The strain rate intensity factor is found using an available semi-analytical solution.

References

References
1.
Griffiths
,
B. J.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
10.1115/1.3261495
2.
Akcan
,
S.
,
Shah
,
S.
,
Moylan
,
S. P.
,
Chhabra
,
P. N.
,
Chandrasekar
,
S.
, and
Yang
,
H. T. Y.
,
2002
, “
Formation of White Layers in Steels by Machining and Their Characteristics
,”
Metall. Mater. Trans.
,
33
(
4
), pp.
1245
1254
.10.1007/s11661-002-0225-z
3.
Kajino
,
S.
, and
Asakawa
,
M.
,
2006
, “
Effect of “Additional Shear Strain Layer” on Tensile Strength and Microstructure of Fine Drawn Wire
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
704
708
.10.1016/j.jmatprotec.2006.04.108
4.
Griffiths
,
B. J.
, and
Furze
,
D. C.
,
1987
, “
Tribological Advantages of White Layers Produced by Machining
,”
ASME J. Tribol.
,
109
(
2
), pp.
338
342
.10.1115/1.3261363
5.
Warren
,
A. W.
, and
Guo
,
Y. B.
,
2005
, “
Numerical Investigation on the Effects of Machining-Induced White Layer During Rolling Contact
,”
Tribol. Trans.
,
48
(
3
), pp.
436
441
.10.1080/05698190500225078
6.
Choi
,
Y.
,
2010
, “
Influence of a White Layer on the Performance of Hard Machined Surfaces in Rolling Contact
,”
Proc. Inst. Mech. Eng., Part B
,
224
(
8
), pp.
1207
1215
.10.1243/09544054JEM1847
7.
Tomlinson
,
W. J.
,
Blunt
,
L. A.
, and
Spraggett
,
S.
,
1991
, “
The Effect of Workpiece Speed and Grinding-Wheel Condition on the Thickness of White Layers Formed on EN.24 Ground Surface
,”
J. Mater. Process. Technol.
,
25
(
1
), pp.
105
110
.10.1016/0924-0136(91)90105-N
8.
Tsunemoto
,
K.
,
Katsuo
,
S.
, and
Hideo
,
O.
,
2003
, “
Grinding Temperature Within Contact Arc Between Wheel and Workpiece in High-Efficiency Grinding of Ultrahard Cutting Tool Materials
,”
J. Mater. Process. Technol.
,
136
(
1–3
), pp.
39
47
.10.1016/S0924-0136(02)00842-7
9.
Umbrello
,
D.
, and
Jawahir
,
I. S.
,
2009
, “
Numerical Modeling of the Influence of Process Parameters and Workpiece Hardness on White Layer Formation in AISI 52100 Steel
,”
Int. J. Adv. Manuf. Technol.
,
44
(
9–10
), pp.
955
968
.10.1007/s00170-008-1911-9
10.
Veldhuis
,
S. C.
,
Dosbaeva
,
G. K.
,
Elfizy
,
A.
,
Fox-Rabinovich
,
G. S.
, and
Wagg
,
T.
,
2010
, “
Investigations of White Layer Formation During Machining of Powder Metallurgical Ni-Based ME 16 Superalloy
,”
J. Mater. Eng. Perform.
,
19
(
7
), pp.
1031
1036
.10.1007/s11665-009-9567-7
11.
Umbrello
,
D.
,
Jayal
,
A. D.
,
Caruso
,
S.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2010
, “
Modeling of White and Dark Layer Formation in Hard Machining of AISI 52100 Bearing Steel
,”
J. Mech. Sci. Technol.
,
14
(
1
), pp.
128
147
.10.1080/10910340903586525
12.
Duan
,
C.
,
Kong
,
W.
,
Hao
,
Q.
, and
Zhou
,
F.
,
2013
, “
Modeling of White Layer Thickness in High Speed Machining of Hardened Steel Based on Phase Transformation Mechanism
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
59
70
.10.1007/s00170-013-5005-y
13.
Huang
,
X.
,
Zhou
,
Z.
,
Ren
,
Y.
,
Mao
,
C.
, and
Li
,
W.
,
2013
, “
Experimental Research Material Characteristics Effect on White Layers Formation in Grinding of Hardened Steel
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1555
1561
.10.1007/s00170-012-4439-y
14.
Sanabria
,
V.
,
Mueller
,
S.
, and
Reimers
,
W.
,
2014
, “
Microstructure Evolution of Friction Boundary Layer During Extrusion of AA 6060
,”
Procedia Eng.
,
81
(2014), pp.
586
591
.10.1016/j.proeng.2014.10.044
15.
Murai
,
T.
,
Matsuoka
,
S.
,
Miyamoto
,
S.
, and
Oki
,
Y.
,
2003
, “
Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusions
,”
J. Mater. Process. Technol.
,
141
(
2
), pp.
207
212
.10.1016/S0924-0136(02)01106-8
16.
Uematsu
,
Y.
,
Tokaji
,
K.
,
Kamakura
,
M.
,
Uchida
,
K.
,
Shibata
,
H.
, and
Bekku
,
N.
,
2006
, “
Effect of Extrusion Conditions on Grain Refinement and Fatigue Behaviour in Magnesium Alloys
,”
J. Mater. Sci. Eng. A
,
434
(
1–2
), pp.
131
140
.10.1016/j.msea.2006.06.117
17.
Tang
,
W.
,
Huang
,
S.
,
Zhang
,
S.
,
Li
,
D.
, and
Peng
,
Y.
,
2011
, “
Influence of Extrusion Parameters on Grain Size and Texture Distributions of AZ31 Alloy
,”
J. Mater. Process. Technol.
,
211
(
7
), pp.
1203
1209
.10.1016/j.jmatprotec.2011.01.014
18.
Alexandrov
,
S.
, and
Richmond
,
O.
,
2001
, “
Singular Plastic Flow Fields Near Surfaces of Maximum Friction Stress
,”
Int. J. Non-Linear Mech.
,
36
(
1
), pp.
1
11
.10.1016/S0020-7462(99)00075-X
19.
Alexandrov
,
S.
, and
Lyamina
,
E.
,
2002
, “
Singular Solutions for Plane Plastic Flow of Pressure-Dependent Materials
,”
Dokl. Phys.
,
47
(
4
), pp.
308
311
.10.1134/1.1477887
20.
Alexandro
,
S.
, and
Mustafa
,
Y.
,
2013
, “
Singular Solutions in Viscoplasticity Under Plane Strain Conditions
,”
Meccanica
,
48
(
9
), pp.
2203
2208
.10.1007/s11012-013-9736-5
21.
Alexandrov
,
S.
, and
Jeng
,
Y.-R.
,
2013
, “
Singular Rigid/Plastic Solutions in Anisotropic Plasticity under Plane Strain Conditions
,”
J. Continuum Mech. Thermodyn.
,
25
(
5
), pp.
685
689
.10.1007/s00161-013-0304-y
22.
Nayfen
,
A. H.
,
1981
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
23.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
24.
Humphreys
,
F. J.
,
Prangnell
,
P. B.
,
Bowen
,
J. R.
,
Gholinia
,
A.
, and
Harris
,
C.
,
1999
, “
Developing Stable Fine-Grain Microstructures by Large Strain Deformation
,”
Philos. Trans. R. Soc. London
357
(1756), pp.
1663
1681
.10.1098/rsta.1999.0395
25.
Pippan
,
R.
,
Wetscher
,
F.
,
Hafok
,
M.
,
Vorhauer
,
A.
, and
Sabirov
,
I.
,
2006
, “
The Limits of Refinement by Severe Plastic Deformation
,”
Adv. Eng. Mater.
,
8
(11), pp.
1046
1056
.10.1002/adem.200600133
26.
Akhtar
,
S. S.
, and
Arif
,
A. F. M.
,
2014
, “
Effect of Profile Corners on the Nitriding Treatment of AISI H13 Hot Extrusion Dies
,”
ASME J. Manuf. Sci. Eng.
,
136
(2), p.
021010
.10.1115/1.4025911
27.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(6), pp.
1564
1583
.10.1557/JMR.1992.1564
28.
Bhushan
,
B.
, and
Li
,
X.
,
2003
, “
Nanomechanical Characterization of Solid Surfaces and Thin Films
,”
Int. Mater. Rev.
,
48
(3), pp.
125
164
.10.1179/095066003225010227
29.
Li
,
X.
, and
Bhushan
,
B.
,
2002
, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications
,”
Mater. Charact.
,
48
(1), pp.
11
36
.10.1016/S1044-5803(02)00192-4
30.
Tsai
,
P. C.
, and
Jeng
,
Y. R.
,
2015
, “
Effects of Nanotube Size and Roof-Layer Coating on Viscoelastic Properties of Hybrid Diamond-Like Carbon and Carbon Nanotube Composites
,”
Carbon
,
86
, pp.
163
173
.10.1016/j.carbon.2015.01.012
31.
Tsai
,
P. C.
, and
Jeng
,
Y. R.
,
2013
, “
Experimental and Numerical Investigation Into the Effect of Carbon Nanotube Buckling on the Reinforcement of CNT/Cu Composites
,”
Compos. Sci. Technol.
,
79
, pp.
28
34
.10.1016/j.compscitech.2013.02.003
32.
Tsai
,
P. C.
, and
Jeng
,
Y. R.
,
2015
, “
Enhanced Mechanical Properties and Viscoelastic Characterizations of Nanonecklace-Reinforced Carbon Nanotube/Copper Composite Films
,”
Appl. Surf. Sci.
,
326
, pp.
131
138
.10.1016/j.apsusc.2014.11.055
33.
Fries
,
T.-P.
, and
Belytschko
,
T.
,
2010
, “
The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
253
304
.10.1002/nme.2914
34.
Alexandrov
,
S.
,
2009
, “
The Strain Rate Intensity Factor and Its Applications: A Review
,”
Mater. Sci. Forum
,
623
(
1
), pp.
1
20
.10.4028/www.scientific.net/MSF.623.1
35.
Alexandrov
,
S.
, and
Jeng
,
Y.-R.
,
2011
, “
Influence of Pressure—Dependence of the Yield Criterion on the Strain-Rate-Intensity Factor
,”
J. Eng. Math.
,
71
(
4
), pp.
339
348
.10.1007/s10665-011-9458-4
36.
Shield
,
R. T.
,
1955
, “
Plastic Flow in a Converging Conical Channel
,”
J. Mech. Phys. Solids
,
3
(
4
), pp.
246
258
.10.1016/0022-5096(55)90035-1
You do not currently have access to this content.