Laser welding of wrought magnesium alloy has been investigated through experimentation and simulation. Laser butt welds and laser lap welds were performed on 2.0 mm thick magnesium alloy AZ31 plates using a 1 kW fiber laser and shielded with argon gas. The effects of laser power and welding speed on weld geometry and microstructure were investigated. Tensile tests were performed to verify weld quality. Through experimentation, a novel processing map was created, which gives the ranges of operating parameters of laser power and welding speed that resulted in viable, defect-free welds. Numerical simulations were performed to predict the weld pool geometry and keyhole stability, and resultant microstructures are shown to be in good agreement with experimental results.

References

References
1.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.10.1007/s00170-007-1279-2
2.
Munitz
,
A.
,
Cotler
,
C.
,
Stern
,
A.
, and
Kohn
,
G.
,
2001
, “
Mechanical Properties and Microstructure of Gas Tungsten Arc Welded Magnesium AZ91D Plates
,”
Mater. Sci. Eng.: A
,
302
(
1
), pp.
68
73
.10.1016/S0921-5093(00)01356-3
3.
Cao
,
X.
,
Jahazi
,
M.
,
Immarigeon
,
J. P.
, and
Wallace
,
W.
,
2006
, “
A Review of Laser Welding Techniques for Magnesium Alloys
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
188
204
.10.1016/j.jmatprotec.2005.06.068
4.
Coelho
,
R. S.
,
Kostka
,
A.
,
Pinto
,
H.
,
Riekehr
,
S.
,
Kocak
,
M.
, and
Pyzalla
,
A. R.
,
2008
, “
Microstructure and Mechanical Properties of Magnesium Alloy AZ31B Laser Beam Welds
,”
Mater. Sci. Eng.: A
,
485
(
1
), pp.
20
30
.10.1016/j.msea.2007.07.073
5.
Kim
,
J.-D.
,
Lee
,
J.-H.
, and
Kim
,
J.-S.
,
2010
, “
Characteristics of Butt-Welded Joints on AZ31 Magnesium Alloy Using a Nd: YAG Laser
,”
Int. J. Precis. Eng. Manuf.
,
11
(
3
), pp.
369
373
.10.1007/s12541-010-0042-z
6.
Wang
,
Z.
,
Gao
,
M.
,
Tang
,
H.
, and
Zeng
,
X.
,
2011
, “
Characterization of AZ31B Wrought Magnesium Alloy Joints Welded by High Power Fiber Laser
,”
Mater. Charact.
,
62
(
10
), pp.
943
951
.10.1016/j.matchar.2011.07.002
7.
Scintilla
,
L. D.
,
Tricarico
,
L.
,
Brandizzi
,
M.
, and
Satriano
,
A. A.
,
2010
, “
Nd: YAG Laser Weldability and Mechanical Properties of AZ31 Magnesium Alloy Butt Joints
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2206
2214
.10.1016/j.jmatprotec.2010.08.005
8.
Chowdhury
,
S. M.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Powidajko
,
E.
,
Weckman
,
D. C.
, and
Zhou
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy
,”
Metall. Mater. Trans. A
,
42
(
7
), pp.
1974
1989
.10.1007/s11661-010-0574-y
9.
Scintilla
,
L. D.
, and
Tricarico
,
L.
,
2013
, “
Optimization of AZ31 Magnesium Alloy Laser Beam Welding Parameters Based on Process Efficiency Calculation by Finite Element Method and Joint Mechanical Properties
,”
Opt. Eng.
,
52
(
10
), p.
105101
.10.1117/1.OE.52.10.105101
10.
Ki
,
H.
,
Mazumder
,
J.
, and
Mohanty
,
P. S.
,
2002
, “
Modeling of Laser Keyhole Welding: Part I. Mathematical Modeling, Numerical Methodology, Role of Recoil Pressure, Multiple Reflections, and Free Surface Evolution
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1817
1830
.10.1007/s11661-002-0190-6
11.
Pang
,
S.
,
Chen
,
L.
,
Zhou
,
J.
,
Yin
,
Y.
, and
Chen
,
T.
,
2011
, “
A Three-Dimensional Sharp Interface Model for Self-Consistent Keyhole and Weld Pool Dynamics in Deep Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
44
(
2
), p.
025301
.10.1088/0022-3727/44/2/025301
12.
Zhou
,
J.
,
Tsai
,
H.-L.
, and
Wang
,
P.-C.
,
2006
, “
Transport Phenomena and Keyhole Dynamics During Pulsed Laser Welding
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
680
690
.10.1115/1.2194043
13.
Marimuthu
,
S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023240
14.
Tan
,
W.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2013
, “
Investigation of Keyhole Plume and Molten Pool Based on a Three-Dimensional Dynamic Model With Sharp Interface Formulation
,”
J. Phys. D: Appl. Phys.
,
46
(
5
), p.
055501
.10.1088/0022-3727/46/5/055501
15.
Kou
,
S.
,
1987
,
Welding Metallurgy
,
John Wiley
,
NY
.
16.
Chowdhury
,
S. H.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Powidajko
,
E.
,
Weckman
,
D. C.
, and
Zhou
,
Y.
,
2012
, “
Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties
,”
Metall. Mater. Trans. A
,
43
(
6
), pp.
2133
2147
.10.1007/s11661-011-1042-z
17.
Funk
,
E. R.
, and
Rieber
,
L. J.
,
1985
,
Handbook of Welding
,
Breton Publishers
,
Albany, NY
.
18.
Tan
,
W.
, and
Shin
,
Y. C.
,
2014
, “
Analysis of Multi-Phase Interaction and Its Effects on Keyhole Dynamics With a Multi-Physics Numerical Model
,”
J. Phys. D: Appl. Phys.
,
47
(
34
), p.
345501
.10.1088/0022-3727/47/34/345501
19.
Lee
,
S.
,
Ham
,
H. J.
,
Kwon
,
S. Y.
,
Kim
,
S. W.
, and
Suh
,
C. M.
,
2013
, “
Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 °C to 400 °C
,”
Int. J. Thermophys.
,
34
(12), pp.
2343
2350
.10.1007/s10765-011-1145-1
20.
Abderrazak
,
K.
,
Bannour
,
S.
,
Mhiri
,
H.
,
Lepalec
,
G.
, and
Autric
,
M.
,
2009
, “
Numerical and Experimental Study of Molten Pool Formation During Continuous Laser Welding of AZ91 Magnesium Alloy
,”
Comput. Mater. Sci.
,
44
(
3
), pp.
858
866
.10.1016/j.commatsci.2008.06.002
21.
He
,
Y.
,
Javaid
,
A.
,
Essadiqi
,
E.
, and
Shehata
,
M.
,
2009
, “
Numerical Simulation and Experimental Study of the Solidification of a Wedge-Shaped AZ31 Mg Alloy Casting
,”
Can. Metall. Q.
,
48
(
2
), pp.
145
155
.10.1179/cmq.2009.48.2.145
You do not currently have access to this content.