Cloud-based manufacturing (CBM) has recently been proposed as an emerging manufacturing paradigm that may potentially change the way manufacturing services are provided and accessed. In the context of CBM, companies may opt to crowdsource part of their manufacturing tasks that are beyond their existing in-house manufacturing capacity to third-party CBM service providers by renting their manufacturing equipment instead of purchasing additional machines. To plan manufacturing scalability for CBM systems, it is crucial to identify potential manufacturing bottlenecks where the entire manufacturing system capacity is limited. Because of the complexity of manufacturing resource sharing behaviors, it is challenging to model and analyze the material flow of CBM systems in which sequential, concurrent, conflicting, cyclic, and mutually exclusive manufacturing processes typically occur. To address and further study this issue, we develop a stochastic Petri nets (SPNs) model to formally represent a CBM system, model and analyze the uncertainties in the complex material flow of the CBM system, evaluate manufacturing performance, and plan manufacturing scalability. We validate this approach by means of a delivery drone example that is used to demonstrate how manufacturers can indeed achieve rapid and cost-effective manufacturing scalability in practice by combining in-house manufacturing and crowdsourcing in a CBM setting.

References

References
1.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
.10.1016/j.jmsy.2013.04.008
2.
Ren
,
L.
,
Zhang
,
L.
,
Wang
,
L.
,
Tao
,
F.
, and
Chai
,
X.
,
2014
, “
Cloud Manufacturing: Key Characteristics and Applications
,”
Int. J. Comput. Integr. Manuf.
, pp.
1
15
.10.1080/0951192X.2014.902105
3.
Lu
,
Y.
,
Xu
,
X.
, and
Xu
,
J.
,
2014
, “
Development of a Hybrid Manufacturing Cloud
,”
J. Manuf. Syst.
,
33
(
4
), pp.
551
566
.10.1016/j.jmsy.2014.05.003
4.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput.-Aided Des.
,
59
, pp.
1
14
.10.1016/j.cad.2014.07.006
5.
Zhang
,
L.
,
Luo
,
Y. L.
,
Tao
,
F.
,
Li
,
B. H.
,
Ren
,
L.
,
Zhang
,
X. S.
,
Guo
,
H.
,
Cheng
,
Y.
,
Hu
,
A. R.
, and
Liu
,
Y. K.
,
2014
, “
Cloud Manufacturing: A New Manufacturing Paradigm
,”
Enterp. Inf. Syst.
,
8
(
2
), pp.
167
187
.10.1080/17517575.2012.683812
6.
Wang
,
L.
,
2013
, “
Machine Availability Monitoring and Machining Process Planning Towards Cloud Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
4
), pp.
263
273
.10.1016/j.cirpj.2013.07.001
7.
Ren
,
L.
,
Zhang
,
L.
,
Tao
,
F.
,
Zhao
,
C.
,
Chai
,
X.
, and
Zhao
,
X.
,
2015
, “
Cloud Manufacturing: From Concept to Practice
,”
Enterp. Inf. Syst.
,
9
(
2
), pp.
186
209
.10.1080/17517575.2013.839055
8.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2014
, “
Cloud-Based Manufacturing: Old Wine in New Bottles?
47th CIRP Conference on Manufacturing Systems
,
Windsor
,
Canada
, pp.
8
18
.10.1016/j.procir.2014.01.035
9.
Wu
,
D. Z.
,
Thames
,
J. L.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Enhancing the Product Realization Process With Cloud-Based Design and Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041004
.10.1115/1.4025257
10.
2014
, “
Shapeways
,” http://www.shapeways.com/
11.
2014
, “
3DHubs
,” http://www.3dhubs.com/
12.
MFG
,
2014
, “
MFG Overview
,” http://www.mfg.com/
13.
Manyika
,
J.
,
Chui
,
M.
,
Bughin
,
J.
,
Dobbs
,
R.
,
Bisson
,
P.
, and
Marrs
,
A.
,
2013
, “
Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy
,”
McKinsey Global Institute
,
San Francisco, CA
, Report No. 6.
14.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z.-K.
,
Chen
,
L.-Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
.10.1115/1.4028533
15.
Spicer
,
P.
, and
Carlo
,
H. J.
,
2007
, “
Integrating Reconfiguration Cost Into the Design of Multi-Period Scalable Reconfigurable Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
202
210
.10.1115/1.2383196
16.
Jeong
,
N.
, and
Rosen
,
D. W.
,
2014
, “
Microstructure Feature Recognition for Materials Using Surfacelet-Based Methods for Computer-Aided Design-Material Integration
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061021
.10.1115/1.4028621
17.
Wang
,
W.
, and
Koren
,
Y.
,
2012
, “
Scalability Planning for Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
31
(
2
), pp.
83
91
.10.1016/j.jmsy.2011.11.001
18.
Putnik
,
G.
,
Sluga
,
A.
,
ElMaraghy
,
H.
,
Teti
,
R.
,
Koren
,
Y.
,
Tolio
,
T.
, and
Hon
,
B.
,
2013
, “
Scalability in Manufacturing Systems Design and Operation: State-of-the-Art and Future Developments Roadmap
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
751
774
.10.1016/j.cirp.2013.05.002
19.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
29
(
4
), pp.
130
141
.10.1016/j.jmsy.2011.01.001
20.
Spicer
,
P.
,
Koren
,
Y.
,
Shpitalni
,
M.
, and
Yip-Hoi
,
D.
,
2002
, “
Design Principles for Machining System Configurations
,”
CIRP Ann.-Manuf. Technol.
,
51
(
1
), pp.
275
280
.10.1016/S0007-8506(07)61516-9
21.
Koren
,
Y.
,
2006
, “
General RMS Characteristics. Comparison With Dedicated and Flexible Systems
,”
Reconfigurable Manufacturing Systems and Transformable Factories
,
Springer
,
Berlin
, pp.
27
45
.10.1007/3-540-29397-3_3
22.
Ghosh
,
S.
,
1995
, “
A Distributed Algorithm for Fault Simulation of Combinatorial and Asynchronous Sequential Digital Designs, Utilizing Circuit Partitioning, on Loosely-Coupled Parallel Processors
,”
Microelectron. Reliab.
,
35
(
6
), pp.
947
967
.10.1016/0026-2714(93)E0021-Z
23.
Rys
,
M.
,
2011
, “
Scalable SQL
,”
Commun. ACM
,
54
(
6
), pp.
48
53
.10.1145/1953122.1953141
24.
ElMaraghy
,
H. A.
, and
Wiendahl
,
H.-P.
,
2009
, “
Changeability: An Introduction
,”
Changeable and Reconfigurable Manufacturing Systems
,
Springer
,
London
, pp.
3
24
.10.1007/978-1-84882-067-8_1
25.
Tolio
,
T.
,
Ceglarek
,
D.
,
ElMaraghy
,
H.
,
Fischer
,
A.
,
Hu
,
S.
,
Laperrière
,
L.
,
Newman
,
S. T.
, and
Váncza
,
J.
,
2010
, “
SPECIES—Co-Evolution of Products, Processes and Production Systems
,”
CIRP Ann.-Manuf. Technol.
,
59
(
2
), pp.
672
693
.10.1016/j.cirp.2010.05.008
26.
Chiang
,
S.-Y.
,
Kuo
,
C.-T.
, and
Meerkov
,
S. M.
,
2000
, “
DT-Bottlenecks in Serial Production Lines: Theory and Application
,”
IEEE Trans. Rob. Autom.
,
16
(
5
), pp.
567
580
.10.1109/70.880806
27.
Chiang
,
S.-Y.
,
Kuo
,
C.-T.
, and
Meerkov
,
S. M.
,
2001
, “
c-Bottlenecks in Serial Production Lines: Identification and Application
,”
Math. Probl. Eng.
,
7
(
6
), pp.
543
578
.10.1155/S1024123X01001776
28.
Kuo
,
C.-T.
,
Lim
,
J.-T.
, and
Meerkov
,
S. M.
,
1996
, “
Bottlenecks in Serial Production Lines: A System-Theoretic Approach
,”
Math. Probl. Eng.
,
2
(
3
), pp.
233
276
.10.1155/S1024123X96000348
29.
Chiang
,
S.-Y.
,
Kuo
,
C.-T.
, and
Meerkov
,
S. M.
,
1998
, “
Bottlenecks in Markovian Production Lines: A Systems Approach
,”
IEEE Trans. Rob. Autom.
,
14
(
2
), pp.
352
359
.10.1109/70.681256
30.
Law
,
A. M.
, and
McComas
,
M. G.
,
1987
, “
Simulation of Manufacturing Systems
,”
Proceedings of the 19th Conference on Winter Simulation
,
ACM
, New York, pp.
631
643
.10.1145/318371.318675
31.
Li
,
J.
, and
Meerkov
,
S. M.
,
2000
, “
Bottlenecks With Respect to Due-Time Performance in Pull Serial Production Lines
,”
Math. Probl. Eng.
,
5
(
6
), pp.
479
498
.10.1155/S1024123X99001209
32.
Lawrence
,
S. R.
, and
Buss
,
A. H.
,
1995
, “
Economic Analysis of Production Bottlenecks
,”
Math. Probl. Eng.
,
1
(
4
), pp.
341
363
.10.1155/S1024123X95000202
33.
Li
,
L.
,
Chang
,
Q.
, and
Ni
,
J.
,
2009
, “
Data Driven Bottleneck Detection of Manufacturing Systems
,”
Int. J. Prod. Res.
,
47
(
18
), pp.
5019
5036
.10.1080/00207540701881860
34.
Li
,
L.
,
2009
, “
Bottleneck Detection of Complex Manufacturing Systems Using a Data-Driven Method
,”
Int. J. Prod. Res.
,
47
(
24
), pp.
6929
6940
.10.1080/00207540802427894
35.
Li
,
L.
,
Chang
,
Q.
,
Ni
,
J.
, and
Biller
,
S.
,
2009
, “
Real Time Production Improvement Through Bottleneck Control
,”
Int. J. Prod. Res.
,
47
(
21
), pp.
6145
6158
.10.1080/00207540802244240
36.
Reisig
,
W.
, and
Rozenberg
,
G.
,
1998
,
Lectures on Petri Nets. I: Basic Models: Advances in Petri Nets
,
Springer
,
Berlin
.
37.
Petri
,
C. A.
,
1980
, “
Introduction to General Net Theory
,”
Net Theory and Applications
,
Springer
,
London
, pp.
1
19
.
38.
David
,
R.
, and
Alla
,
H.
,
1994
, “
Petri Nets for Modeling of Dynamic Systems: A Survey
,”
Automatica
,
30
(
2
), pp.
175
202
.10.1016/0005-1098(94)90024-8
39.
Zhou
,
M. C.
,
Dicesare
,
F.
, and
Desrochers
,
A. A.
,
1989
, “
A Top-Down Approach to Systematic Synthesis of Petri Net Models for Manufacturing Systems
,” 1989
IEEE
International Conference on Robotics and Automation
, Vol.
1–3
, pp.
534
539
.10.1109/ROBOT.1989.100041
40.
Zurawski
,
R.
, and
Zhou
,
M.
,
1994
, “
Petri Nets and Industrial Applications: A Tutorial
,”
IEEE Trans. Ind. Electron.
,
41
(
6
), pp.
567
583
.10.1109/41.334574
41.
Feldmann
,
K.
,
Colombo
,
A. W.
,
Schnur
,
C.
, and
Stockel
,
T.
,
1999
, “
Specification, Design, and Implementation of Logic Controllers Based on Colored Petri Net Models and the Standard IEC 1131. Part II: Design and Implementation
,”
IEEE Trans. Control Syst. Technol.
,
7
(
6
), pp.
666
674
.10.1109/87.799667
42.
Bonet
,
P.
,
Lladó
,
C. M.
,
Puijaner
,
R.
, and
Knottenbelt
,
W. J.
,
2007
, “
pipe v2. 5: A Petri Net Tool for Performance Modeling
,”
23rd Latin American Conference on Informatics CLEI 2007
, pp.
50
62
.
43.
2014
, “
3DRobotics
,” http://3drobotics.com/
44.
2014
, “
willit3dprint
,” http://www.willit3dprint.com
You do not currently have access to this content.