This work describes the testing of microfluidic components created using additive manufacturing. An Objet Eden 250 was used to create microfluidic channel test coupons with passages ranging from 0.5 to 3.0 mm and wall thicknesses ranging from 0.032 to 0.5 mm. Coupons were cleaned and tested under flow to examine structural integrity. Microfluidic channels with wall thicknesses down to 0.032 mm could be printed, cleaned, and tested successfully, although plastic deformation was observed in coupons with wall thicknesses below 0.1 mm. Given these limits, additive manufacturing based microfluidic heat exchangers (HXs) offer cost and performance benefits in natural convection HX applications.

References

References
1.
Bergles
,
A. E.
,
1999
, “
Enhanced Heat Transfer: Endless Frontier, or Mature and Routine?
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
79
88
.10.1615/JEnhHeatTransf.v6.i2-4.30
2.
Hesselgreaves
,
J. E.
,
2001
,
Compact Heat Exchangers: Selection, Design, and Operation
,
Elsevier Science, Kidlington
,
Oxford, UK
, p.
34
.
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.10.1115/1.4028599
4.
Beaman
,
J.
,
Bourell
,
D.
, and
Wallace
,
D.
,
2014
, “
Special Issue: Additive Manufacturing (AM) and 3D Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060301
.10.1115/1.4028670
5.
Gerwin
,
D.
,
1993
, “
Manufacturing Flexibility: A Strategic Perspective
,”
Manage. Sci.
,
39
(
4
), pp.
395
410
.10.1287/mnsc.39.4.395
6.
Callister
,
W.
,
2003
,
Materials Science and Engineering an Introduction
,
Wiley
,
New York
, p.
765
.
7.
IPEX
,
2001
, “
Chemical Resistance Guide
,” http://www.gilsoneng.com/reference/ChemRes.pdf
8.
Bansal
,
P.
, and
Chin
,
T.
,
2003
, “
Modeling and Optimisation of Wire-and-Tube Condenser
,”
Int. J. Refrig.
,
26
(
5
), pp.
601
613
.10.1016/S0140-7007(02)00044-0
9.
Bar-Cohen
,
A.
, and
Rohsenow
,
W.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
.10.1115/1.3246622
10.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.10.1115/1.4028669
11.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.10.1115/1.4028580
12.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
13.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.10.1115/1.4028510
14.
Objet
,
2007
, “
Models Cleaning Procedure Using NaOH (Sodium Hydroxide)
,”
Objet Geometries, Inc.
,
Billerica, MA
. Available at http://www.tritech3d.co.uk/images/contentitems/67_1_1.pdf
15.
Bonyár
,
A.
,
Sántha
,
H.
, and
Ring
,
B.
,
2010
, “
3D Rapid Prototyping Technology (RPT) as a Powerful Tool in Microfluidic Development
,”
Procedia Eng.
,
5
, pp.
291
294
.10.1016/j.proeng.2010.09.105
16.
Panhalkar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2014
, “
Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061017
.10.1115/1.4028586
You do not currently have access to this content.