The mask-image-projection-based stereolithography process (MIP-SL) using a digital micromirror device (DMD) is an area-processing-based additive manufacturing (AM) process. In the MIP-SL process, a set of mask images are dynamically projected onto a resin surface to selectively cure liquid resin into layers of an object. Consequently, the MIP-SL process can be faster with a lower cost than the laser-based stereolithography apparatus (SLA) process. Currently an increasing number of companies are developing low-cost 3D printers based on the MIP-SL process. However, current commercially available MIP-SL systems are mostly based on Acrylate resins, which have larger shrinkages when compared to epoxy resins used in the laser-based SLA process. Consequently, controlling the shrinkage-related shape deformation in the MIP-SL process is challenging. In this research, we evaluate different mask image exposing strategies for building part layers and their effects on the deformation control in the MIP-SL process. Accordingly, a mask image planning method and related algorithms have been developed for a given computer-aided design (CAD) model. The planned mask images have been tested by using a commercial MIP-SL machine. The experimental results illustrate that our method can effectively reduce the deformation by as much as 32%. A discussion on the advantages and disadvantages of the mask image planning method and future research directions are also presented.

References

References
1.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping and Manufacturing Fundamentals of Stereolithography
,
ASME Press
,
New York
.
2.
Koplin
,
C.
,
Gurr
,
M.
,
Mülhaupt
,
R.
, and
Jaeger
,
R.
,
2008
, “
Shape Accuracy in Stereolithography: A Ma-Terial Model for the Curing Behavior of Photo-Initiated Resins
,”
International User's Conference on Rapid Prototyping and Rapid Tooling and Rapid Manufacturing (Euro-uRapid)
, pp.
315
318
.
3.
Davis
,
B. E.
,
2001
, “
Characterization and Calibration of Stereolithography Products and Processes
,” Master thesis, Georgia Institute of Technology, Atlanta, GA.
4.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.10.1115/1.4026898
5.
Zhou
,
C.
,
2014
, “
A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061023
.10.1115/1.4028518
6.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.10.1115/1.4028620
7.
Huang
,
Y.-M.
, and
Lan
,
H.-Y.
,
2005
, “
Dynamic Reverse Compensation to Increase the Accuracy of the Rapid Prototyping System
,”
J. Mater. Process. Technol.
,
167
(
2
), pp.
167
176
.10.1016/j.jmatprotec.2005.06.029
8.
Huang
,
Y.-M.
, and
Lan
,
H.-Y.
,
2006
, “
Path Planning Effect for the Accuracy of Rapid Prototyping System
,”
Int. J. Adv. Manuf. Technol.
,
30
(
3
), pp.
233
246
.10.1007/s00170-005-0085-y
9.
Campanelli
,
S. L.
,
Cardano
,
G.
,
Giannoccaro
,
R.
,
Ludovico
,
A. D.
, and
Bohez
,
E. L. J.
,
2007
, “
Statistical Analysis of the Stereolithographic Process to Improve the Accuracy
,”
Comput.-Aided Des.
,
39
(
1
), pp.
80
86
.10.1016/j.cad.2006.10.003
10.
Narahara
,
H.
,
Tanaka
,
F.
,
Kishinami
,
T.
,
Igarashi
,
S.
, and
Saito
,
K.
,
1999
, “
Reaction Heat Effects on Initial Linear Shrinkage and Deformation in Stereolithography
,”
Rapid Prototyping J.
,
5
(
3
), pp.
120
128
.10.1108/13552549910278946
11.
Huang
,
Y.-M.
, and
Jiang
,
C.-P.
,
2003
, “
Curl Distortion Analysis During Photopolymerisation of Stereolithography Using Dynamic Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
21
(
8
), pp.
586
595
.10.1007/s00170-002-1317-z
12.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
13.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.10.1115/1.4028540
14.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.10.1115/1.4028580
15.
Bertsch
,
A.
,
Jézéquel
,
J. Y.
, and
André
,
J. C.
,
1997
, “
Study of Spatial Resolution of a New 3D Microfabrication Process: The Microstereophotolithography Using a Dynamic Mask-Generator Technique
,”
J. Photochem. Photobiol., A: Chem.
,
107
(
1
), pp.
275
281
.10.1016/S1010-6030(96)04585-6
16.
Chatwin
,
C.
,
Farsari
,
M.
,
Huang
,
S.
,
Heywood
,
M.
,
Birch
,
P.
,
Young
,
R.
, and
Richardson
,
J.
,
1998
, “
UV Microstereolithography System That Uses Spatial Light Modulator Technology
,”
Appl. Opt.
,
37
(
32
), pp.
7514
7522
.10.1364/AO.37.007514
17.
Beluze
,
L.
,
Bertsch
,
A.
, and
Renaud
,
P.
,
1999
, “
Microstereolithography: A New Process to Build Complex 3D Objects
,”
Proc. SPIE
,
3680
(1), pp.
808
817
.10.1117/12.341277
18.
Farsari
,
M.
,
Huang
,
S.
,
Birch
,
P.
,
Claret-Tournier
,
F.
,
Young
,
R.
,
Budgett
,
D.
,
Bradfield
,
C.
, and
Chatwin
,
C.
,
1999
, “
Microfabrication by Use of Spatial Light Modulator in the Ultraviolet: Experimental Results
,”
Opt. Lett.
,
24
(
8
), pp.
549
550
.10.1364/OL.24.000549
19.
Monneret
,
S.
,
Loubere
,
V.
, and
Corbel
,
S.
,
1999
, “
Microstereolithography Using Dynamic Mask Generator and a Non-Coherent Visible Light Source
,”
Proc. SPIE
,
3680
(1), pp.
553
561
.10.1117/12.341246
20.
Bertsch
,
A.
,
Bernhard
,
P.
,
Vogt
,
C.
, and
Renaud
,
P.
,
2000
, “
Rapid Prototyping of Small Size Objects
,”
Rapid Prototyping J.
,
6
(
4
), pp.
259
266
.10.1108/13552540010373362
21.
Hadipoespito
,
G.
,
Yang
,
Y.
,
Choi
,
H.
,
Ning
,
G. Q.
, and
Li
,
X. C.
,
2003
, “
Digital Micromirror Device Based Microstereolithography for Micro Structures of Transparent Photopolymer and Nanocomposites
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
13
24
.
22.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
.10.1016/j.sna.2004.12.011
23.
EnvisionTEC
,
2012
, “
Ultra Machine
,” http://www.envisiontec.de/index.php?id=108, (Last Accessed Jan. 20, 2012).
24.
EnvisionTEC, 2015, “DLP®-Digital Light Processing,” http://envisiontec.com/3d-printers/#DLP, (Last Accessed Feb. 18, 2015).
25.
Limaye
,
A. S.
, and
Rosen
,
D. W.
,
2007
, “
Process Planning Method for Mask Projection Micro-Stereolithography
,”
Rapid Prototyping J.
,
13
(
2
), pp.
76
84
.10.1108/13552540710736759
26.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061004
.10.1115/1.4000416
27.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Processes
,
14
(
2
), pp.
107
118
.10.1016/j.jmapro.2011.10.002
28.
Huang
,
Y.-M.
, and
Lan
,
H.-Y.
,
2005
, “
CAD/CAE/CAM Integration for Increasing the Accuracy of Mask Rapid Prototyping System
,”
Comput. Ind.
,
56
(
5
), pp.
442
456
.10.1016/j.compind.2005.01.002
29.
Huang
,
Y. M.
, and
Jiang
,
C. P.
,
2003
, “
Numerical Analysis of a Mask Type Stereolithography Process Using a Dynamic Finite-Element Method
,”
Int. J. Adv. Manuf. Technol.
,
21
(
9
), pp.
649
655
.10.1007/s00170-002-1388-x
30.
Jiang
,
C. P.
,
Huang
,
Y. M.
, and
Liu
,
C. H.
,
2006
, “
Dynamic Finite Element Analysis of Photopolymerization in Stereolithography
,”
Rapid Prototyping J.
,
12
(
3
), pp.
173
180
.10.1108/13552540610670753
31.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.10.1115/1.4028510
32.
Karrer
,
P.
,
Corbel
,
S.
,
Andre
,
J. C.
, and
Lougnot
,
D. J.
,
1992
, “
Shrinkage Effects in Photopolymerizable Resins Containing Filling Agents: Application to Stereophotolithography
,”
J. Polym. Sci.: Part A Polym. Chem.
,
30
(
13
), pp.
2715
2723
.10.1002/pola.1992.080301307
33.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
.10.1115/1.4028484
34.
Price
,
S.
,
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061019
.10.1115/1.4028485
35.
FLIR Systems
,
2015
, “
FLIR SC8000 HD Series
,” http://www.flir.com/thermography/americas/us/view/?id=45674, (Last Accessed Feb. 17, 2015).
36.
Chen
,
Y.
, and
Wang
,
C. C. L.
,
2011
, “
Uniform Offsetting of Polygonal Model Based on Layered Depth-Normal Images
,”
Comput.-Aided Des.
,
43
(
1
), pp.
31
46
.10.1016/j.cad.2010.09.002
37.
Micro-Vu Corporation
,
2014
, “
Micro-Vu SOL Measuring Machine
,” http://www.microvu.com/sol.html, (Last Accessed Apr. 13, 2014).
38.
Pang
,
T. H.
,
Guertin
,
M. D.
, and
Nguyen
,
H. D.
,
1995
, “
Accuracy of Stereolithography Parts: Mechanism and Modes of Distortion for a “Letter H” Diagnostic Part
,”
Proceedings of the Solid Freeform Fabrication
, pp.
170
180
.
You do not currently have access to this content.