Drop-on-demand (DOD) microdroplet formation and deposition play an important role in additive manufacturing, particularly in printing of three-dimensional (3D) in vitro biological models for pharmacological and pathological studies, for tissue engineering and regenerative medicine applications, and for building of cell-integrated microfluidic devices. In development of a DOD based microdroplet deposition process for 3D cell printing, the droplet formation, controlled on-demand deposition and at the single-cell level, and most importantly, maintaining the viability and functionality of the cells during and after the printing are all remaining to be challenged. This report presents our recent study on developing a novel DOD based microdroplet deposition process for 3D printing by utilization of an alternating viscous and inertial force jetting (AVIFJ) mechanism. The results include an analysis of droplet formation mechanism, the system configuration, and experimental study of the effects of process parameters on microdroplet formation. Sodium alginate solutions are used for microdroplet formation and deposition. Key process parameters include actuation signal waveforms, nozzle dimensional features, and solution viscosity. Sizes of formed microdroplets are examined by measuring the droplet diameter and velocity. Results show that by utilizing a nozzle at a 45 μm diameter, the size of the formed microdroplets is in the range of 52–72 μm in diameter and 0.4–2.0 m/s in jetting speed, respectively. Reproducibility of the system is also examined and the results show that the deviation of the formed microdroplet diameter and the droplet deposition accuracy is within 6% and 6.2 μm range, respectively. Experimental results demonstrate a high controllability and precision for the developed DOD microdroplet deposition system with a potential for precise cell printing.

References

References
1.
Sweet
,
R. G.
,
1965
, “
High Frequency Recording With Electrostatically Deflected Ink Jets
,”
Rev. Sci. Instrum.
,
36
(
2
), pp.
131
136
.10.1063/1.1719502
2.
Ben-Tzvi
,
P.
, and
Rone
,
W.
,
2010
, “
Microdroplet Generation in Gaseous and Liquid Environments
,”
Microsyst. Technol.
,
16
(
3
), pp.
333
356
.10.1007/s00542-009-0962-7
3.
Wijshoff
,
H.
,
2010
, “
The Dynamics of the Piezo Inkjet Printhead Operation
,”
Phys. Rep.
,
491
(
4–5
), pp.
77
177
.10.1016/j.physrep.2010.03.003
4.
Phamduy
,
T. B.
,
Raof
,
N. A.
,
Schiele
,
N. R.
,
Yan
,
Z.
,
Corr
,
D. T.
,
Huang
,
Y.
,
Xie
,
Y.
, and
Chrisey
,
D. B.
,
2012
, “
Laser Direct-Write of Single Microbeads Into Spatially-Ordered Patterns
,”
Biofabrication
,
4
(
2
), p.
025006
.10.1088/1758-5082/4/2/025006
5.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.10.1115/1.4028599
6.
Ming
,
F.
,
Chandra
,
S.
, and
Park
,
C. B.
,
2008
, “
Building Three-Dimensional Objects by Deposition of Molten Metal Droplets
,”
Rapid Prototyping J.
,
14
(
1
), pp.
44
52
.10.1108/13552540810841553
7.
Chao
,
Y.
,
Qi
,
L.
,
Xiao
,
Y.
,
Luo
,
J.
, and
Zhou
,
J.
,
2012
, “
Manufacturing of Micro Thin-Walled Metal Parts by Micro-Droplet Deposition
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
484
491
.10.1016/j.jmatprotec.2011.10.015
8.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.10.1115/1.4028540
9.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.10.1115/1.4028669
10.
Luo
,
J.
,
Pan
,
H.
, and
Kinzel
,
E. C.
,
2014
, “
Additive Manufacturing of Glass
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061024
.10.1115/1.4028531
11.
Dijksman
,
J. F.
,
Duineveld
,
P. C.
,
Hack
,
M. J. J.
,
Pierik
,
A.
,
Rensen
,
J.
,
Rubingh
,
J. E.
,
Schram
,
I.
, and
Vernhout
,
M. M.
,
2007
, “
Precision Ink Jet Printing of Polymer Light Emitting Displays
,”
J. Mater. Chem.
,
17
(
6
), pp.
511
522
.10.1039/b609204g
12.
Tseng
,
H.-Y.
, and
Subramanian
,
V.
,
2011
, “
All Inkjet-Printed, Fully Self-Aligned Transistors for Low-Cost Circuit Applications
,”
Org. Electron.
,
12
(
2
), pp.
249
256
.10.1016/j.orgel.2010.11.013
13.
Arrabito
,
G.
, and
Pignataro
,
B.
,
2010
, “
Inkjet Printing Methodologies for Drug Screening
,”
Anal. Chem.
,
82
(
8
), pp.
3104
3107
.10.1021/ac100169w
14.
Xu
,
F.
,
Celli
,
J.
,
Rizvi
,
I.
,
Moon
,
S.
,
Hasan
,
T.
, and
Demirci
,
U.
,
2011
, “
A Three-Dimensional In Vitro Ovarian Cancer Coculture Model Using a High-Throughput Cell Patterning Platform
,”
Biotechnol. J.
,
6
(
2
), pp.
204
212
.10.1002/biot.201000340
15.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnol. J.
,
1
(
9
), pp.
910
917
.10.1002/biot.200600081
16.
Arai
,
K.
,
Iwanaga
,
S.
,
Toda
,
H.
,
Genci
,
C.
,
Nishiyama
,
Y.
, and
Nakamura
,
M.
,
2011
, “
Three-Dimensional Inkjet Biofabrication Based on Designed Images
,”
Biofabrication
,
3
(
3
), p.
034113
.10.1088/1758-5082/3/3/034113
17.
Yu
,
Y.
,
Zhang
,
Y.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.10.1115/1.4028511
18.
Xu
,
C.
,
Zhang
,
Z.
,
Christensen
,
K.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Freeform Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Tubular Constructs Using Inkjetting
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061020
.10.1115/1.4028578
19.
Bernacka-Wojcik
,
I.
,
Senadeera
,
R.
,
Wojcik
,
P. J.
,
Silva
,
L. B.
,
Doria
,
G.
,
Baptista
,
P.
,
Aguas
,
H.
,
Fortunato
,
E.
, and
Martins
,
R.
,
2010
, “
Inkjet Printed and ‘Doctor Blade’ TiO2 Photodetectors for DNA Biosensors
,”
Biosens. Bioelectron.
,
25
(
5
), pp.
1229
1234
.10.1016/j.bios.2009.09.027
20.
Zheng
,
Q.
,
Lu
,
J.
,
Chen
,
H.
,
Huang
,
L.
,
Cai
,
J.
, and
Xu
,
Z.
,
2011
, “
Application of Inkjet Printing Technique for Biological Material Delivery and Antimicrobial Assays
,”
Anal. Biochem.
,
410
(
2
), pp.
171
176
.10.1016/j.ab.2010.10.024
21.
Rodriguez-Devora
,
J. I.
,
Zhang
,
B.
,
Reyna
,
D.
,
Shi
,
Z. D.
, and
Xu
,
T.
,
2012
, “
High Throughput Miniature Drug-Screening Platform Using Bioprinting Technology
,”
Biofabrication
,
4
(
3
), p.
035001
.10.1088/1758-5082/4/3/035001
22.
Yamaguchi
,
S.
,
Ueno
,
A.
,
Akiyama
,
Y.
, and
Morishima
,
K.
,
2012
, “
Cell Patterning Through Inkjet Printing of One Cell Per Droplet
,”
Biofabrication
,
4
(
4
), p.
045005
.10.1088/1758-5082/4/4/045005
23.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
,
2004
, “
Computer-Aided Tissue Engineering: Overview, Scope and Challenges
,”
Biotechnol. Appl. Biochem.
,
39
(
1
), pp.
29
47
.10.1042/BA20030108
24.
Calvert
,
P.
,
2007
, “
Printing Cells
,”
Science
,
318
(
5848
), pp.
208
209
.10.1126/science.1144212
25.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
26.
Jayasinghe
,
S. N.
,
2011
, “
Biojets in Regenerative Biology and Medicine
,”
Mater. Today
,
14
(
5
), pp.
202
211
.10.1016/S1369-7021(11)70115-8
27.
Billiet
,
T.
,
Vandenhaute
,
M.
,
Schelfhout
,
J.
,
Van Vlierberghe
,
S.
, and
Dubruel
,
P.
,
2012
, “
A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering
,”
Biomaterials
,
33
(
26
), pp.
6020
6041
.10.1016/j.biomaterials.2012.04.050
28.
Melchels
,
F. P. W.
,
Domingos
,
M. A. N.
,
Klein
,
T. J.
,
Malda
,
J.
,
Bartolo
,
P. J.
, and
Hutmacher
,
D. W.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.10.1016/j.progpolymsci.2011.11.007
29.
Xu
,
T.
,
Zhao
,
W.
,
Zhu
,
J. M.
,
Albanna
,
M. Z.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2013
, “
Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology
,”
Biomaterials
,
34
(
1
), pp.
130
139
.10.1016/j.biomaterials.2012.09.035
30.
Kasili
,
P. M.
,
Cullum
,
B. M.
,
Griffin
,
G. D.
, and
Vo-Dinh
,
T.
,
2002
, “
Nanosensor for in vivo Measurement of the Carcinogen Benzo a Pyrene in a Single Cell
,”
J. Nanosci. Nanotechnol.
,
2
(
6
), pp.
653
658
.10.1166/jnn.2002.155
31.
Rudensky
,
B.
,
Paz
,
E.
,
Altarescu
,
G.
,
Raveh
,
D.
,
Elstein
,
D.
, and
Zimran
,
A.
,
2003
, “
Fluorescent Flow Cytometric Assay: A New Diagnostic Tool for Measuring Beta-Glucocerebrosidase Activity in Gaucher Disease
,”
Blood Cells, Mol., Dis.
,
30
(
1
), pp.
97
99
.10.1016/S1079-9796(03)00010-X
32.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B. J.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
,
2007
, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mater. Sci. Eng.: C
,
27
(
3
), pp.
372
376
.10.1016/j.msec.2006.05.047
33.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.10.1115/1.4028512
34.
Ikegawa
,
M.
,
Ishii
,
E.
,
Harada
,
N.
, and
Takagishi
,
T.
,
2014
, “
Development of Ink-Particle Flight Simulation for Continuous Inkjet Printers
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051021
.10.1115/1.4027943
35.
Fathi
,
S.
,
Dickens
,
P.
,
Khodabakhshi
,
K.
, and
Gilbert
,
M.
,
2013
, “
Microcrystal Particles Behaviour in Inkjet Printing of Reactive Nylon Materials
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011009
.10.1115/1.4023272
36.
Barron
,
J. A.
,
Ringeisen
,
B. R.
,
Kim
,
H.
,
Spargo
,
B. J.
, and
Chrisey
,
D. B.
,
2004
, “
Application of Laser Printing to Mammalian Cells
,”
Thin Solid Films
,
453–454
, pp.
383
387
.10.1016/j.tsf.2003.11.161
37.
Melissinaki
,
V.
,
Gill
,
A. A.
,
Ortega
,
I.
,
Vamvakaki
,
M.
,
Ranella
,
A.
,
Haycock
,
J. W.
,
Fotakis
,
C.
,
Farsari
,
M.
, and
Claeyssens
,
F.
,
2011
, “
Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications
,”
Biofabrication
,
3
(
4
), p.
045005
.10.1088/1758-5082/3/4/045005
38.
Jayasinghe
,
S. N.
,
Qureshi
,
A. N.
, and
Eagles
,
P. A.
,
2006
, “
Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells
,”
Small
,
2
(
2
), pp.
216
219
.10.1002/smll.200500291
39.
Yao
,
R.
,
Zhang
,
R. J.
,
Luan
,
J.
, and
Lin
,
F.
,
2012
, “
Alginate and Alginate/Gelatin Microspheres for Human Adipose-Derived Stem Cell Encapsulation and Differentiation
,”
Biofabrication
,
4
(
2
), p.
025007
.10.1088/1758-5082/4/2/025007
40.
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change Inks for High-Resolution Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061010
.10.1115/1.4028483
41.
Moon
,
S.
,
Hasan
,
S. K.
,
Song
,
Y. S.
,
Xu
,
F.
,
Keles
,
H. O.
,
Manzur
,
F.
,
Mikkilineni
,
S.
,
Hong
,
J. W.
,
Nagatomi
,
J.
,
Haeggstrom
,
E.
,
Khademhosseini
,
A.
, and
Demirci
,
U.
,
2010
, “
Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets
,”
Tissue Eng., Part C
,
16
(
1
), pp.
157
166
.10.1089/ten.tec.2009.0179
42.
Demirci
,
U.
,
2006
, “
Acoustic Picoliter Droplets for Emerging Applications in Semiconductor Industry and Biotechnology
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
957
966
.10.1109/JMEMS.2006.878879
43.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.10.1016/j.biomaterials.2004.04.011
44.
Ringeisen
,
B. R.
,
Spargo
,
B. J.
, and
Wu
,
P. K.
,
2010
,
Cell and Organ Printing
,
Springer
,
New York
, pp.
3
18
.
45.
Takahashi
,
S.
,
Kitagawa
,
H.
, and
Tomikawa
,
Y.
,
2002
, “
A Study of Liquid Dispensing Head Using Fluidic Inertia
,”
Jpn. J. Appl. Phys
, pp.
3442
3445
.10.1143/JJAP.41.3442
46.
Li
,
R.
,
Ashgriz
,
N.
, and
Chandra
,
S.
,
2008
, “
Droplet Generation From Pulsed Micro-Jets
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1679
1686
.10.1016/j.expthermflusci.2008.06.002
47.
Barron
,
J. A.
,
Krizman
,
D. B.
, and
Ringeisen
,
B. R.
,
2005
, “
Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
121
130
.10.1007/s10439-005-8971-x
48.
Yusof
,
A.
,
Keegan
,
H.
,
Spillane
,
C. D.
,
Sheils
,
O. M.
,
Martin
,
C. M.
,
O'Leary
,
J. J.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2011
, “
Inkjet-Like Printing of Single-Cells
,”
Lab Chip
,
11
(
14
), pp.
2447
2454
.10.1039/c1lc20176j
49.
Chen
,
A. U.
, and
Basaran
,
O. A.
,
2002
, “
A New Method for Significantly Reducing Drop Radius Without Reducing Nozzle Radius in Drop-on-Demand Drop Production
,”
Phys. Fluids
,
14
.10.1063/1.1427441
You do not currently have access to this content.