Functionally graded bioactive glass coatings on bioinert metallic substrates were produced by using continuous-wave (CW) laser irradiation. The aim is to achieve strong adhesion on the substrates and high bioactivity on the top surface of a coating material for load-bearing implants in biomedical applications. The morphology and microstructure of the bioactive glass from the laser coating process were investigated as functions of processing parameters. Laser sintering mechanisms were discussed with respect to the resulting morphology and microstructure. It has been shown that double layer laser coating results in a dense bond coat layer and a porous top coat layer with lower degree of crystallinity than an enameling coating sample. The dense bond coat strongly attached to the titanium substrate with a 10 μm wide mixed interfacial layer. A highly bioactive porous structure of the top coat layer is beneficial for early formation of a bone-bonding hydroxycarbonate apatite (HCA) layer. The numerical model developed in this work also allows for prediction of porosity and crystallinity in top coat layers of bioactive glass developed through laser induced sintering and crystallization.

References

References
1.
Sola
,
A.
,
Bellucci
,
D.
,
Cannillo
,
V.
, and
Cattini
,
A.
,
2011
, “
Bioactive Glass Coatings: A Review
,”
Surf. Eng.
,
27
(
8
), pp.
560
572
.10.1179/1743294410Y.0000000008
2.
Liu
,
X.
,
Chu
,
P.
, and
Ding
,
C.
,
2004
, “
Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications
,”
Mater. Sci. Eng.
, R,
47
(
3–4
), pp.
49
121
.10.1016/j.mser.2004.11.001
3.
Shi
,
J. Z.
,
Chen
,
C. Z.
,
Zhang
,
S.
, and
Wu
,
Y.
,
2007
, “
Application of Surface Modification in Biomedical Materials Research
,”
Surf. Rev. Lett.
,
14
(
3
), pp.
361
369
.10.1142/S0218625X07009669
4.
Ramaswamy
,
Y.
,
Wu
,
C.
, and
Zreiqat
,
H.
,
2009
, “
Orthopedic Coating Materials: Considerations and Applications
,”
Expert Rev. Med. Devices
,
6
(
4
), pp.
423
430
.10.1586/erd.09.17
5.
Hench
,
L. L.
,
1998
, “
Biomaterials: A Forecast for the Future
,”
Biomaterials
,
19
(
16
), pp.
1419
1423
.10.1016/S0142-9612(98)00133-1
6.
Hench
,
L. L.
,
2013
, “
Chronology of Bioactive Glass Development and Clinical Applications
,”
New J. Glass Ceram.
,
3
(
2
), pp.
67
73
.10.4236/njgc.2013.32011
7.
Hench
,
L. L.
,
Splinter
,
R. J.
,
Allen
,
W. C.
, and
Greenlee
,
T. K.
,
1971
, “
Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials
,”
J. Biomed. Mater. Res.
,
5
(
6
), pp.
117
141
.10.1002/jbm.820050611
8.
Hench
,
L. L.
, and
Wilson
,
J.
,
1993
,
An Introduction to Bioceramics
,
World Scientific
, Singapore.10.1142/2028
9.
Moritz
,
N.
,
Rossi
,
S.
,
Vedel
,
E.
,
Tirri
,
T.
,
Ylänen
,
H.
,
Aro
,
H.
, and
Närhi
,
T.
,
2004
, “
Implants Coated With Bioactive Glass by CO2-Laser, an In Vivo Study
,”
J. Mater. Sci.: Mater. Med.
,
15
(
7
), pp.
795
802
.10.1023/B:JMSM.0000032819.64994.42
10.
Mirhosseini
,
N.
,
Crouse
,
P. L.
,
Li
,
L.
, and
Garrod
,
D.
,
2007
, “
Combined Laser/Sol–Gel Synthesis of Calcium Silicate Coating on Ti–6Al–4V Substrates for Improved Cell Integration
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
7998
8002
.10.1016/j.apsusc.2007.02.172
11.
Cheng
,
G. J.
, and
Ye
,
C.
,
2010
, “
Experiment, Thermal Simulation, and Characterizations on Transmission Laser Coating of Hydroxyapatite on Metal Implant
,”
J. Biomed. Mater. Res., Part A
,
92
(
1
), pp.
70
79
.10.1002/jbm.a.32325
12.
Comesaña
,
R.
,
Quintero
,
F.
,
Lusquiños
,
F.
,
Pascual
,
M. J.
,
Boutinguiza
,
M.
,
Durán
,
A.
, and
Pou
,
J.
,
2010
, “
Laser Cladding of Bioactive Glass Coatings
,”
Acta Biomater.
,
6
(
3
), pp.
953
961
.10.1016/j.actbio.2009.08.010
13.
Chen
,
K.
, and
Jia
,
Y.
,
2010
, “
Laser Coating of Multi Layer Hydroxyapatite on Titanium Alloy
,”
2010 3rd International Conference on Biomedical Engineering and Informatics
,
IEEE
, Yantai, Oct. 16–18, pp.
1704
1706
.10.1109/BMEI.2010.5639743
14.
O'Flynn
,
K. P.
, and
Stanton
,
K. T.
,
2013
, “
Laser Sintering and Crystallization of a Bioactive Glass-Ceramic
,”
J. Non-Cryst. Solids
,
360
, pp.
49
56
.10.1016/j.jnoncrysol.2012.10.021
15.
Pazo
,
A.
,
Saiz
,
E.
, and
Tomsia
,
A. P.
,
1998
, “
Silicate Glass Coatings on Ti-Based Implants
,”
Acta Mater.
,
46
(
7
), pp.
2551
2558
.10.1016/S1359-6454(98)80039-6
16.
Gomez-Vega
,
J. M.
,
Saiz
,
E.
,
Tomsia
,
A. P.
,
Marshall
,
G. W.
, and
Marshall
,
S. J.
,
2000
, “
Bioactive Glass Coatings With Hydroxyapatite and Bioglass Particles on Ti-Based Implants. 1. Processing
,”
Biomaterials
,
21
(
2
), pp.
105
111
.10.1016/S0142-9612(99)00131-3
17.
Itälä
,
A.
,
Ylänen
,
H. O.
,
Yrjans
,
J.
,
Heino
,
T.
,
Hentunen
,
T.
,
Hupa
,
M.
, and
Aro
,
H. T.
,
2002
, “
Characterization of Microrough Bioactive Glass Surface: Surface Reactions and Osteoblast Responses In Vitro
,”
J. Biomed. Mater. Res.
,
62
(
3
), pp.
404
411
.10.1002/jbm.10273
18.
Pereira
,
M. M.
, and
Hench
,
L. L.
,
1996
, “
Mechanisms of Hydroxyapatite Formation on Porous Gel-Silica Substrates
,”
J. Sol-Gel Sci. Technol.
,
7
(
1–2
), pp.
59
68
.10.1007/BF00401884
19.
Pereira
,
M. M.
,
Clark
,
A. E.
, and
Hench
,
L. L.
,
1995
, “
Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface
,”
J. Am. Ceram. Soc.
,
78
(
9
), pp.
2463
2468
.10.1111/j.1151-2916.1995.tb08686.x
20.
Vellet-Regi
,
M.
,
Salinas
,
A. J.
,
Martinez
,
I.
,
Izquierdo-Barba
,
I.
, and
Perez-Pariente
,
J.
,
2004
, “
Textural Properties of CaO-SiO2 Glasses for Use in Implants
,”
Solid State Ionics
,
172
(
1–4
), pp.
441
444
.10.1016/j.ssi.2004.04.037
21.
Filho
,
O. P.
,
Latorre
,
G. P.
, and
Hench
,
L. L.
,
1996
, “
Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5
,”
J. Biomed. Mater. Res.
,
30
(4), pp.
509
514
.10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T
22.
Bhatla
,
A.
, and
Yao
,
Y. L.
,
2009
, “
Effect of Laser Surface Modification on the Crystallinity of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051004
.10.1115/1.3039519
23.
Hsu
,
S.-T.
,
Tan
,
H.
, and
Yao
,
Y. L.
,
2013
, “
Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011005
.10.1115/1.4025394
24.
Wang
,
H.
,
Kongsuwan
,
P.
,
Satoh
,
G.
, and
Yao
,
Y. L.
,
2012
, “
Femtosecond Laser-Induced Simultaneous Surface Texturing and Crystallization of a-Si:H Thin Film: Absorption and Crystallinity
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031006
.10.1115/1.4006548
25.
Frenkel
,
J.
,
1945
, “
Viscous Flow of Crystalline Bodies Under the Action of Surface Tension
,”
J. Phys. (USSR)
,
9
(
5
), pp.
385
391
.
26.
Vogel
,
W.
,
1994
, “
Crystallization of Glasses
,”
Glass Chemistry
,
Springer
,
Berlin, Heidelberg
, pp.
280
362
.10.1007/978-3-642-78723-2_10
27.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
–1112.10.1063/1.1750380
28.
Johnson
,
W. A.
, and
Mehl
,
R.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. AIME
,
135
, pp.
416
442
.
29.
Kolmogorov
,
A. N.
,
1937
, “
On the Statistical Theory of Metal Crystallisation
,”
Izv. Akad. Nauk SSSR
,
3
, pp.
355
–359.
30.
Peitl
,
O.
,
Zanotto
,
E. D.
,
Serbena
,
F. C.
, and
Hench
,
L. L.
,
2012
, “
Compositional and Microstructural Design of Highly Bioactive P2O5-Na2O-CaO-SiO2 Glass-Ceramics
,”
Acta Biomater.
,
8
(
1
), pp.
321
332
.10.1016/j.actbio.2011.10.014
31.
Chen
,
Q. Z.
,
Xu
,
J. L.
,
Yu
,
L. G.
,
Fang
,
X. Y.
, and
Khor
,
K. A.
,
2012
, “
Spark Plasma Sintering of Sol–Gel Derived 45S5 Bioglass®-Ceramics: Mechanical Properties and Biocompatibility Evaluation
,”
Mater. Sci. Eng., C
,
32
(
3
), pp.
494
502
.10.1016/j.msec.2011.11.023
32.
Moir
,
G. K.
, and
Glasser
,
F. P.
,
1974
, “
Phase Equilibria in the System Na2SiO3-CaSiO3
,”
Phys. Chem. Glasses
,
15
(
1
), pp.
6
11
.
33.
Ohsato
,
H.
,
Takéuchi
,
Y.
, and
Maki
,
I.
,
1990
, “
Structural Study of the Phase Transition of Na4Ca4 [Si6O18]
,”
Acta Crystallogr., Sect. B: Struct. Sci.
,
46
(
2
), pp.
125
131
.10.1107/S0108768189011171
34.
Fokin
,
V. M.
,
Potapov
,
O. V.
,
Zanotto
,
E. D.
,
Spiandorello
,
F. M.
,
Ugolkov
,
V. L.
, and
Pevzner
,
B. Z.
,
2003
, “
Mutant Crystals in Na2O · 2CaO · 3SiO2 Glasses
,”
J. Non-Cryst. Solids
,
331
(
1–3
), pp.
240
253
.10.1016/j.jnoncrysol.2003.08.074
35.
Fokin
,
V. M.
, and
Zanotto
,
E. D.
,
2007
, “
Continuous Compositional Changes of Crystal and Liquid During Crystallization of a Sodium Calcium Silicate Glass
,”
J. Non-Cryst. Solids
,
353
(
24–25
), pp.
2459
2468
.10.1016/j.jnoncrysol.2007.04.014
36.
Krüger
,
P.
,
1993
, “
On the Relation Between Non-Isothermal and Isothermal Kolmogorov–Johnson–Mehl–Avrami Crystallization Kinetics
,”
J. Phys. Chem. Solids
,
54
(
11
), pp.
1549
1555
.10.1016/0022-3697(93)90349-V
37.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.10.1016/j.ijmachtools.2003.10.019
38.
Bouhifd
,
M. A.
,
Richet
,
P.
,
Besson
,
P.
,
Roskosz
,
M.
, and
Ingrin
,
J.
,
2004
, “
Redox State, Microstructure and Viscosity of a Partially Crystallized Basalt Melt
,”
Earth Planet. Sci. Lett.
,
218
(
1–2
), pp.
31
44
.10.1016/S0012-821X(03)00641-1
39.
Prado
,
M. O.
, and
Zanotto
,
E. D.
,
2002
, “
Glass Sintering With Concurrent Crystallization
,”
C.R. Chim.
,
5
(
11
), pp.
773
786
.10.1016/S1631-0748(02)01447-9
40.
Gutzow
,
I.
,
Pascova
,
R.
, and
Karamanov
,
A.
,
1998
, “
The Kinetics of Surface Induced Sinter Crystallization and the Formation of Glass-Ceramic Materials
,”
J. Mater. Sci.
,
33
(
21
), pp.
5265
5273
.10.1023/A:1004400508154
41.
Gupta
,
T. K.
, and
Coble
,
R. L.
,
1968
, “
Sintering of ZnO: II, Density Decrease and Pore Growth During the Final Stage of the Process
,”
J. Am. Ceram. Soc.
,
51
(
9
), pp.
525
528
.10.1111/j.1151-2916.1968.tb15680.x
42.
Tan
,
H.
, and
Yao
,
Y. L.
,
2013
, “
Laser Joining of Continuous Glass Fiber Composite Preforms
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011010
.10.1115/1.4023270
43.
Kongsuwan
,
P.
,
Satoh
,
G.
, and
Yao
,
Y. L.
,
2012
, “
Transmission Welding of Glass by Femtosecond Laser: Mechanism and Fracture Strength
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011004
.10.1115/1.4005306
44.
Kirchhof
,
J.
,
Unger
,
S.
,
Dellith
,
J.
, and
Scheffel
,
A.
,
2014
, “
Diffusion in Binary TiO_2-SiO_2 Glasses
,”
Opt. Mater. Express
,
4
(
4
), pp.
672
–680.10.1364/OME.4.000672
45.
Zhang
,
Y.
,
Ni
,
H.
, and
Chen
,
Y.
,
2010
, “
Diffusion Data in Silicate Melts
,”
Rev. Mineral. Geochem.
,
72
(
1
), pp.
311
408
.10.2138/rmg.2010.72.8
46.
Tomsia
,
A. P.
, and
Pask
,
J. A.
,
1986
, “
Chemical Reactions and Adherence at Glass/Metal Interfaces: An Analysis
,”
Dent. Mater.
,
2
(
1
), pp.
10
16
.10.1016/S0109-5641(86)80063-X
47.
Stanton
,
K. T.
,
O'Flynn
,
K. P.
,
Nakahara
,
S.
,
Vanhumbeeck
,
J.-F.
,
Delucca
,
J. M.
, and
Hooghan
,
B.
,
2009
, “
Study of the Interfacial Reactions Between a Bioactive Apatite-Mullite Glass-Ceramic Coating and Titanium Substrates Using High Angle Annular Dark Field Transmission Electron Microscopy
,”
J. Mater. Sci.: Mater. Med.
,
20
(
4
), pp.
851
857
.10.1007/s10856-008-3650-8
48.
Scherer
,
G. W.
,
1997
, “
Sintering of Sol-Gel Films
,”
J. Sol-Gel Sci. Technol.
,
8
(
1–3
), pp.
353
363
.10.1007/BF02436865
49.
Kang
,
S.-J. L.
,
2005
,
Sintering: Densification, Grain Growth, and Microstructure
,
Elsevier
,
Butterworth-Heinemann, Burlington, MA
.
50.
Rahaman
,
M. N.
,
2003
,
Ceramic Processing and Sintering
,
Marcel Dekker
,
New York
.
51.
Kim
,
B. H.
, and
Lee
,
K. H.
,
1994
, “
Crystallization and Sinterability of Cordierite-Based Glass Powders Containing CeO2
,”
J. Mater. Sci.
,
29
(
24
), pp.
6592
6598
.10.1007/BF00354026
52.
Arstila
,
H.
,
Vedel
,
E.
,
Hupa
,
L.
, and
Hupa
,
M.
,
2007
, “
Factors Affecting Crystallization of Bioactive Glasses
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
1543
1546
.10.1016/j.jeurceramsoc.2006.04.017
You do not currently have access to this content.