The poor thermal conductivity and low elongation-to-break ratio of titanium lead to the development of extreme temperatures (in excess of 550 °C) localized in the tool–chip interface during machining of its alloys. At such temperature level, titanium becomes highly reactive with most tool materials resulting in accelerated tool wear. The atomization-based cutting fluid (ACF) spray system has recently been demonstrated to improve tool life in titanium machining due to good cutting fluid penetration causing the temperature to be reduced in the cutting zone. In this study, the cutting temperatures are measured both by inserting thermocouples at various locations of the tool–chip interface and the tool–work thermocouple technique. Cutting temperatures for dry machining and machining with flood cooling are also characterized for comparison with the ACF spray system temperature data. Findings reveal that the ACF spray system more effectively reduces cutting temperatures over flood cooling and dry conditions. The tool–chip friction coefficient indicates that the fluid film created by the ACF spray system also actively penetrates the tool–chip interface to enhance lubrication during titanium machining.

References

1.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.10.1016/S0924-0136(96)00030-1
2.
Nath
,
C.
,
Kapoor
,
S. G.
,
DeVor
,
R.
,
Srivastava
,
A.
, and
Iverson
,
J.
,
2012
, “
Design and Evaluation of an Atomization-Based Cutting Fluid Spray System in Turning of Titanium Alloy
,”
J. Manuf. Processes
,
14
(
4
), pp.
452
459
.10.1016/j.jmapro.2012.09.002
3.
Davies
,
M. A.
,
Ueda
,
T.
,
M'Saoubi
,
R.
,
Mullany
,
B.
, and
Cooke
,
A. L.
,
2007
, “
On the Measurement of Temperature in Material Removal Processes
,”
CIRP Ann. - Manuf. Technol.
,
56
(
2
), pp.
581
604
.10.1016/j.cirp.2007.10.009
4.
Longbottom
,
J. M.
, and
Lanham
,
J. D.
,
2005
, “
Cutting Temperature Measurement While Machining—A Review
,”
Aircr. Eng. Aerosp. Technol.
,
77
(
2
), pp.
122
130
.10.1108/00022660510585956
5.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2006
,
Metal Cutting Theory and Practice
,
Taylor & Francis
,
New York
.
6.
Herbert
,
E. G.
,
1926
, “
The Measurement of Cutting Temperatures
,”
Proc. Inst. Mech. Eng.
,
1
, pp.
289
329
.
7.
Boothroyd
,
G.
,
1961
, “
Photographic Technique for the Determination of Metal Cutting Temperatures
,”
Br. J. Appl. Phys.
,
12
(
5
), pp.
238
242
.10.1088/0508-3443/12/5/307
8.
Werschmoeller
,
D.
, and
Li
,
X.
,
2011
, “
Measurement of Tool Internal Temperatures in the Tool–Chip Contact Region by Embedded Micro Thin Film Thermocouples
,”
J. Manuf. Processes
,
13
(
2
), pp.
147
152
.10.1016/j.jmapro.2011.05.001
9.
El–Wardany
,
T. I.
,
Mohammed
,
E.
, and
Elbestawi
,
M. A.
,
1996
, “
Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-To-Cut Materials
,”
Int. J. Mach. Tools Manuf.
,
36
(
5
), pp.
611
634
.10.1016/0890-6955(95)00043-7
10.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti–6Al–6V–2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.10.1016/S0043-1648(96)07255-9
11.
Klocke
,
F.
,
Kramer
,
A.
,
Sangermann
,
H.
, and
Lung
,
D.
,
2012
, “
Thermo-Mechanical Tool Loading During High-Performance Cutting of Hard-To-Cut Materials
,”
Procedia CIRP
,
1
, pp.
295
300
.10.1016/j.procir.2012.04.053
12.
Sato
,
M.
,
Tamura
,
N.
, and
Tanaka
,
H.
,
2011
, “
Temperature Variation in the Cutting Tool in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021005
.10.1115/1.4003615
13.
Li
,
L.
,
Chang
,
H.
,
Wang
,
M.
,
Zuo
,
D. W.
, and
He
,
L.
,
2004
, “
Temperature Measurement in High Speed Milling Ti6Al4V
,”
Key Eng. Mater.
,
259–260
, pp.
804
808
.10.4028/www.scientific.net/KEM.259-260.804
14.
Anagonye
,
A.
, and
Stephenson
,
D. A.
,
2002
, “
Modeling Cutting Temperature for Turning Inserts With Various Tool Geometries and Materials
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
544
552
.10.1115/1.1461838
15.
Li
,
R.
, and
Shih
,
A. J.
,
2006
, “
Finite Element Modeling of 3D Turning of Titanium
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
253
261
.10.1007/s00170-005-2511-6
16.
Karpat
,
Y.
,
2011
, “
Temperature Dependent Flow Softening of Titanium Alloy TI6Al4V: An Investigation Using Finite Element Simulation of Machining
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
737
749
.10.1016/j.jmatprotec.2010.12.008
17.
Sima
,
M.
, and
Ozel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.10.1016/j.ijmachtools.2010.08.004
18.
Ozel
,
T.
,
Sima
,
M.
,
Srivastara
,
A. K.
, and
Kaftanoglu
,
B.
,
2010
, “
Investigations on the Effects of Multi-Layered Coated Inserts in Machining Ti-6Al-4V Alloy With Experiments and Finite Element Simulations
,”
CIRP Ann. - Manuf. Technol.
,
59
(
1
), pp.
77
82
.10.1016/j.cirp.2010.03.055
19.
Stephenson
,
D. A.
,
1993
, “
Tool-Work Thermocouple Temperature Measurements—Theory and Implementation Issues
,”
J. Eng. Ind.
,
115
(
4
), pp.
432
437
.10.1115/1.2901786
20.
Jun
,
M.
,
Suhas
,
S.
,
DeVor
,
R.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.10.1115/1.2738961
21.
Hoyne
,
A. C.
,
Nath
,
C.
, and
Kapoor
,
S. G.
,
2013
, “
Characterization of Fluid Film Produced by an Atomization-Based Cutting Fluid (ACF) Spray System During Machining
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051006
.10.1115/1.4025012
22.
Nath
,
C.
,
Kapoor
,
S. G.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2013
, “
Effect of Fluid Concentration in Titanium Machining With an Atomization-Based Cutting Fluid (ACF) Spray System
,”
J. Manuf. Processes
,
15
(
4
), pp.
419
425
.10.1016/j.jmapro.2013.06.002
23.
Nandy
,
A. K.
,
Gowrishankar
,
M. C.
, and
Paul
,
S.
,
2009
, “
Some Studies on High-Pressure Cooling in Turning of TI–6Al–4V Alloy With High Pressure Coolant Supplies
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
182
198
.10.1016/j.ijmachtools.2008.08.008
24.
Nath
,
C.
,
Kapoor
,
S. G.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2014
, “
Study of Droplet Spray Behavior of an Atomization-Based Cutting Fluid (ACF) System for Machining Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021004
.10.1115/1.4025504
You do not currently have access to this content.