The objective of this paper is to assess the correlation of volumetric tool wear (VTW) and wear rate of carbide tools on the material removal rate (MRR) of titanium alloys. A previously developed methodology for assessing the worn tool material volume is utilized for quantifying the VTW of carbide tools when machining Ti–6Al–4V. To capture the tool response, controlled milling experiments are conducted at suitable corner points of the recommended feed-speed design space, for constant stock material removal volumes. For each case, the tool material volume worn away, as well as the corresponding volumetric wear profile evolution in terms of a set of geometric coefficients, is quantified—these are then related to the MRR. Further, the volumetric wear rate and the M-ratio (volume of stock removed to VTW) which is a measure of the cutting tool efficiency, are related to the MRR—these provide a tool-life based optimal MRR for profitability. This work not only elevates tool wear from a 1D to 3D concept, but helps in assessing machining economics from a stock material-removal-efficiency perspective as well.

References

1.
Kuttolamadom
,
M. A.
, and
Mears
,
M. L.
,
2011
, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries: Need, Methodology and Validation
,”
ASME
Paper No. MSEC2011-50278. 10.1115/MSEC2011-50278
2.
Roth
,
J. T.
,
Mears
,
M. L.
,
Djurdjanovic
,
D.
,
Kurfess
,
T. R.
, and
Yang
,
X.
,
2007
, “
Quality and Inspection of Machining Operations: Review of Condition Monitoring and CMM Inspection Techniques—2000 to Present
,”
ASME
Paper No. MSEC2007-31221, pp.
861
872
. 10.1115/MSEC2007-31221
3.
ISO
,
1989
, “
Tool Life Testing in Milling—Part 1: Face Milling, Part 2: End Milling
,” Geneva, Switzerland, Standard No. ISO 8688-1, ISO 8688-2.
4.
Davim
,
J. P.
,
2008
,
Machining: Fundamentals and Recent Advances
,
Springer
,
New York
.
5.
Burger
,
U.
,
Kuttolamadom
,
M. A.
,
Bryan
,
A. M.
,
Mears
,
M. L.
, and
Kurfess
,
T. R.
,
2009
, “
Volumetric Flank Wear Characterization for Titanium Milling Insert Tools
,”
ASME
Paper No. MSEC2009-84256. 10.1115/MSEC2009-84256
6.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
,
2005
, “
Quantification of Tool Wear Using White Light Interferometry and Three-Dimensional Computational Metrology
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
591
596
.10.1016/j.ijmachtools.2004.08.022
7.
Astakhov
,
V. P.
,
2006
,
Tribology of Metal Cutting (Tribology and Interface Engineering Series)
,
Elsevier
,
New York
.
8.
Shaw
,
M. C.
,
2004
,
Metal Cutting Principles
,
MIT Press
,
Cambridge, MA
.
9.
Kuttolamadom
,
M. A.
,
Mears
,
M. L.
, and
Kurfess
,
T. R.
,
2012
, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part 1: Need, Methodology and Standardization
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051002
.10.1115/1.4007184
10.
Kuttolamadom
,
M. A.
,
Mears
,
M. L.
,
Kurfess
,
T. R.
,
Bryan
,
M. A.
, and
Burger
,
U.
,
2012
, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries—Part 2: Experimental Investigation and Validation on Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051003
.10.1115/1.4007294
11.
Dieter
,
G.
,
1986
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.10.5962/bhl.title.35895
12.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2004
, “
Modeling of CBN Tool Crater Wear in Finish Hard Turning
,”
Int. J. Adv. Manuf. Technol.
,
24
(
9
), pp.
632
639
.10.1007/s00170-003-1744-5
13.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2004
, “
Modeling of CBN Tool Flank Wear Progression in Finish Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
98
106
.10.1115/1.1644543
14.
Huang
,
Y.
, and
Dawson
,
T. G.
,
2005
, “
Tool Crater Wear Depth Modeling in CBN Hard Turning
,”
Wear
,
258
(
9
), pp.
1455
1461
.10.1016/j.wear.2004.08.010
15.
Huang
,
Y.
,
Chou
,
Y. K.
, and
Liang
,
S. Y.
,
2007
, “
CBN Tool Wear in Hard Turning: A Survey on Research Progresses
,”
Int. J. Adv. Manuf. Technol.
,
35
(
1
), pp.
443
453
.10.1007/s00170-006-0737-6
16.
Devillez
,
A.
,
Lesko
,
S.
, and
Mozer
,
W.
,
2004
, “
Cutting Tool Crater Wear Measurement With White Light Interferometry
,”
Wear
,
256
(
1–2
), pp.
56
65
.10.1016/S0043-1648(03)00384-3
17.
Lane
,
B. M.
,
Shi
,
M.
,
Dow
,
T. A.
, and
Scattergood
,
R.
,
2010
, “
Diamond Tool Wear When Machining Al6061 and 1215 Steel
,”
Wear
,
268
(
11–12
), pp.
1434
1441
.10.1016/j.wear.2010.02.019
18.
Wang
,
W. H.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
,
2006
, “
3D Measurement of Crater Wear by Phase Shifting Method
,”
Wear
,
261
(
2
), pp.
164
171
.10.1016/j.wear.2005.09.036
19.
Avila
,
R. F.
,
Godoy
,
C.
,
Abrao
,
A. M.
, and
Lima
,
M. M.
,
2008
, “
Topographic Analysis of the Crater Wear on Tin, Ti(C,N) and (Ti,Al)N Coated Carbide Tools
,”
Wear
,
265
(
1–2
), pp.
49
56
.10.1016/j.wear.2007.08.026
20.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
,
2002
, “
Machining Hardened Steel With Polycrystalline Cubic Boron Nitride
,” Ph.D. thesis, Georgia Institute of Technology, Altanta, GA.
21.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
,
2006
, “
Modeling the Progression of Flank Wear on Uncoated and Ceramic-Coated Polycrystalline Cubic Boron Nitride Tools in Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
104
109
.10.1115/1.2039097
22.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
,
2000
, “
An Investigation of Tool Wear and Surface Quality in Hard Turning
,”
Trans. NAMRI/SME
,
200
(
28
), pp.
215
220
.
23.
Chawla
,
R.
, and
Datar
,
S. B.
,
1980
, “
Deduction of Flank and Crater Wear From Measurements of the Total Volumetric Wear Rates of Radioactive Tools
,”
Wear
,
58
(
2
), pp.
213
222
.10.1016/0043-1648(80)90151-9
24.
Durazo-Cardenas
,
I.
,
Shore
,
P.
,
Luo
,
X.
,
Jacklin
,
T.
,
Impey
,
S. A.
, and
Cox
,
A.
,
2007
, “
3D Characterisation of Tool Wear Whilst Diamond Turning Silicon
,”
Wear
,
262
(
3–4
), pp.
340
349
.10.1016/j.wear.2006.05.022
25.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2007
,
Metal Cutting Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
26.
Kuttolamadom
,
M. A.
,
Jones
,
J. J.
,
Mears
,
M. L.
, and
Choragudi
,
A.
,
2010
, “
Investigation of the Machining of Titanium Components for Lightweight Vehicles
,”
SAE
Paper No. 2010-01-0022.10.4271/2010-01-0022
27.
Kuttolamadom
,
M. A.
, and
Mears
,
M. L.
,
2011
, “
Modeling & Simulation of Tool Wear in AdvantEdge FEM When Machining Ti–6Al–4V: Challenges & Advances
,”
Third Wave Systems 2011 International User's Conference
,
Jacksonville, FL
, May 25–26.
28.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.10.1016/S0924-0136(96)00030-1
29.
1 U.S. Dept. of Defense
,
1974
, “
Military Handbook: Titanium and Titanium Alloys
,” Washington, DC, Document No. MIL-HDBK697A.
30.
Donachie
,
M. J.
,
2000
,
Titanium: A Technical Guide
,
ASM International
,
Materials Park, OH
.
31.
Kendall
,
L. A.
,
1994
,
ASM Metals Handbook: Vol. 16—Machining, Tool Wear and Tool Life
,
ASM International
,
Materials Park, OH
.
32.
Wright
,
P. K.
,
1984
, “
Physical Models of Tool Wear for Adaptive Control in Flexible Machining Cells
,”
Computer Integrated Manufacturing
,
ASME Production Engineering Division
, Vol.
8
,
New York
, pp.
19
31
.
33.
ASM
,
1995
,
ASM Specialty Handbook: Tool Materials
,
ASM International
,
Materials Park, OH
.
34.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.10.1016/j.ijmachtools.2007.10.014
35.
Ginting
,
A.
, and
Nouari
,
M.
,
2007
, “
Optimal Cutting Conditions When Dry End Milling the Aeroengine Material Ti-6242s
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
319
324
.10.1016/j.jmatprotec.2006.10.051
36.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.10.1016/0043-1648(82)90113-2
37.
Colding
,
B.
, and
Konig
,
W.
,
1971
, “
Validity of the Taylor Equation in Metal Cutting
,”
Ann. CIRP
,
19
(
4
), pp.
793
812
.
38.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.10.1115/1.2831013
39.
Umbrello
,
D.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.10.1016/j.jmatprotec.2007.05.007
40.
Wang
,
Z. G.
,
Rahman
,
M.
,
Wong
,
Y. S.
, and
Li
,
X. P.
,
2005
, “
A Hybrid Cutting Force Model for High-Speed Milling of Titanium Alloys
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
71
74
.10.1016/S0007-8506(07)60052-3
41.
Zoya
,
Z. A.
, and
Krishnamurthy
,
R.
,
2000
, “
The Performance of CBN Tools in the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
80
86
.10.1016/S0924-0136(99)00464-1
42.
Li
,
R.
, and
Shih
,
A. J.
,
2006
, “
Finite Element Modeling of 3D Turning of Titanium
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3
), pp.
253
261
.10.1007/s00170-005-2511-6
43.
Che-Haron
,
C. H.
,
2001
, “
Tool Life and Surface Integrity in Turning Titanium Alloy
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
231
237
.10.1016/S0924-0136(01)00926-8
44.
Nouari
,
M.
, and
Ginting
,
A.
,
2006
, “
Wear Characteristics and Performance of Multi-Layer CVD-Coated Alloyed Carbide Tool in Dry End Milling of Titanium Alloy
,”
Surf. Coat. Technol.
,
200
(
18–19
), pp.
5663
5676
.10.1016/j.surfcoat.2005.07.063
45.
Sun
,
J.
, and
Guo
,
Y.
,
2009
, “
Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Adv. Manuf. Technol.
,
41
(
7
), pp.
651
659
.10.1007/s00170-008-1521-6
46.
Kuttolamadom
,
M. A.
,
Mears
,
M. L.
, and
Kurfess
,
T. R.
,
2015
, “
The Correlation of the Volumetric Wear Rate of Turning Tool Inserts With Carbide Grain Sizes
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011015
.10.1115/1.4028129
47.
Kuo
,
H.
,
Meyer
,
K.
,
Lindle
,
R.
, and
Ni
,
J.
,
2012
, “
Estimation of Milling Tool Temperature Considering Coolant and Wear
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031002
.10.1115/1.4005799
You do not currently have access to this content.