This paper presents a physics-based analysis to quantitatively describe the effects of grain size, grain boundaries, and crystallographic orientation on the flow stress of the polycrystalline material and thereby on the cutting and thrust forces. The model has been experimentally validated, in terms of the force intensities and sensitivities to microstructure attributes such as the grain size and the misorientation by comparing the forces to measured data in micromachining of polycrystalline silicon carbide (p-SiC). Molecular dynamics (MD) simulations are performed to explore the effects of grain boundaries and misorientation and to validate the modeling analysis in the context of resulting force ratios.

References

References
1.
Moore
,
M. A.
, and
King
,
F. S.
,
1998
, “
Fracture vs Plastic Deformation Processes in the Sliding Abrasive Wear of Ceramics
,”
Wear
,
60
(1), pp.
123
140
.10.1016/0043-1648(80)90253-7
2.
Tow
,
S. B.
, and
McPherson
,
R.
,
1986
, “
Fine Scale Abrasive Wear of Ceramics by a Plastic Cutting Process
,”
Sci. Hard Mater.
, p.
865
.
3.
Jasinevicius
,
R. G.
,
2006
, “
Influence of Cutting Conditions Scaling in the Machining of Semiconductors Crystals With Single Point Diamond Tool
,”
J. Mater. Processing Technol.
,
179
(
1–3
), pp.
111
116
.10.1016/j.jmatprotec.2006.03.106
4.
Li
,
X. P.
,
He
,
T.
, and
Rahman
,
M.
,
2005
, “
Tool Wear Characteristics and Their Effects on Nanoscale Ductile Mode Cutting of Silicon Wafer
,”
Wear
,
259
(
7
), pp.
1207
1214
.10.1016/j.wear.2004.12.020
5.
Ueda
,
K.
,
Sugita
,
T.
,
Hiraga
,
H.
, and
Iwata
,
K.
,
1991
, “
A J-Integral Approach to Material Removal Mechanisms in Microcutting of Ceramics
,”
CIRP Ann.
,
40
(
1
), pp.
61
64
.10.1016/S0007-8506(07)61934-9
6.
Tanaka
,
N.
,
Ikawa
,
S.
, and
Shimada
,
H.
,
2004
, “
Brittle-Ductile Transition in Monocrystalline Silicon Analyzed by Molecular Dynamics Simulation
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
6
), pp.
583
590
.10.1243/095440604774202213
7.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation
,”
Int. J. Mach. Tool Manuf.
,
47
(
1
), pp.
75
80
.10.1016/j.ijmachtools.2006.02.016
8.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2014
, “
A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile–Brittle Transition in Milling Process of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051012
.10.1115/1.4007462
9.
Yan
,
J.
,
Takahashi
,
Y.
,
Tamaki
,
J.
,
Kubo
,
A.
,
Kuriyagawa
,
T.
, and
Sato
,
Y.
,
2006
, “
Ultraprecision Machining Characteristics of Poly-Crystalline Germanium
,”
JSME Int. J., Ser. C
,
49
(
1
), pp.
63
69
.10.1299/jsmec.49.63
10.
Patter
,
J.
,
Gao
,
W.
, and
Yasuto
,
K.
,
2004
, “
Ductile Regime Nano-Machining of Polycrystalline Silicon Carbide
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
522
532
.10.1115/1.1949614
11.
Siva
,
V.
,
Li
,
X. P.
, and
Liang
,
S. Y.
,
2009
, “
Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials
,”
J. Mater. Process. Technol.
,
209
(7), pp.
3306
3319
.10.1016/j.jmatprotec.2008.07.036
12.
Cheng
,
X.
,
Wei
,
T.
,
Yang
,
X. H.
, and
Guo
,
Y. B.
,
2014
, “
Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051013
.10.1115/1.4027996
13.
Siva
,
V.
,
Li
,
X. P.
,
Fergani
,
O.
, and
Liang
,
S. Y.
,
2013
, “
Crystallographic Effects on Microscale Machining of Polycrystalline Brittle Materials
,”
J. Micro Nano-Manuf.
,
1
(
4
), p.
041001
.10.1115/1.4025255
14.
Fergani
,
O.
,
Tabei
,
A.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2014
, “
Prediction of Polycrystalline Materials Texture Evolution in Machining Via Viscoplastic Self-Consistent Modeling
,”
J. Manuf. Process.
,
16
(
4
), pp.
543
550
.10.1016/j.jmapro.2014.07.004
15.
Arif
,
M.
,
Xinquan
,
Z.
,
Rahman
,
M.
, and
Kumar
,
S.
,
2013
, “
A Predictive Model of the Critical Undeformed Chip Thickness for Ductile–Brittle Transition in Nano-Machining of Brittle Materials
,”
Int. J. Mach. Tool Manuf.
,
64
, pp.
114
119
.10.1016/j.ijmachtools.2012.08.005
16.
Patten
,
J. A.
, and
Jacob
,
J.
,
2008
, “
Comparison Between Numerical Simulations and Experiments for Single-Point Diamond Turning of Single-Crystal Silicon Carbide
,”
J. Manuf. Process.
,
10
(
1
), pp.
28
33
.10.1016/j.jmapro.2008.08.001
17.
Hughes
,
G. D.
,
Smith
,
S. D.
,
Pande
,
C. S.
,
Johnson
,
H. R.
, and
Armstrong
,
R. W.
,
1986
, “
Hall–Petch Strenghening for the Microhardness of Twelve Nanometer Grain Diameter Electrodeposited Nickel
,”
Scr. Metall.
,
20
(1), pp.
93
97
.10.1016/0036-9748(86)90219-X
18.
Siva
,
V.
,
2007
, “
Predictive Modeling for Ductile Machining of Brittle Materials
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
19.
Suzuki
,
H. O. K.
,
Yonenaga
,
T.
, and
Kirchner
,
I.
,
1995
, “
Yield Strength of Diamond
,”
Phys. Rev. Lett.
,
75
(
19
), pp.
3470
3472
.10.1103/PhysRevLett.75.3470
20.
Kovacs
,
G. T. A.
,
1998
,
Micromachined Transducers Sourcebook
,
WCB/McGraw-Hill
,
New York
.
21.
Blanckenhagen
,
B. V.
,
Gumbsh
,
P.
, and
Artz
,
E.
,
2001
, “
Dislocation Sources in Discrete Dislocation Simulations of Thin-Film Plasticity and the Hall–Petch Relation
,”
Modell. Simul. Mater. Sci.
,
9
(3), pp.
157
169
.10.1088/0965-0393/9/3/303
22.
Conrad
,
H.
,
2004
, “
Grain-Size Dependence of the Flow Stress of Cu From Millimeters to Nanometers
,”
Metall. Mater. Trans. A
,
35
(
9
), pp.
2681
2695
.10.1007/s11661-004-0214-5
You do not currently have access to this content.