This paper presents a physics-based analysis to quantitatively describe the effects of grain size, grain boundaries, and crystallographic orientation on the flow stress of the polycrystalline material and thereby on the cutting and thrust forces. The model has been experimentally validated, in terms of the force intensities and sensitivities to microstructure attributes such as the grain size and the misorientation by comparing the forces to measured data in micromachining of polycrystalline silicon carbide (p-SiC). Molecular dynamics (MD) simulations are performed to explore the effects of grain boundaries and misorientation and to validate the modeling analysis in the context of resulting force ratios.
Issue Section:
Research Papers
Topics:
Cutting,
Flow (Dynamics),
Grain boundaries,
Grain size,
Machining,
Stress,
Thrust,
Modeling,
Brittleness
References
1.
Moore
, M. A.
, and King
, F. S.
, 1998
, “Fracture vs Plastic Deformation Processes in the Sliding Abrasive Wear of Ceramics
,” Wear
, 60
(1), pp. 123
–140
.10.1016/0043-1648(80)90253-72.
Tow
, S. B.
, and McPherson
, R.
, 1986
, “Fine Scale Abrasive Wear of Ceramics by a Plastic Cutting Process
,” Sci. Hard Mater.
, p. 865
.3.
Jasinevicius
, R. G.
, 2006
, “Influence of Cutting Conditions Scaling in the Machining of Semiconductors Crystals With Single Point Diamond Tool
,” J. Mater. Processing Technol.
, 179
(1–3
), pp. 111
–116
.10.1016/j.jmatprotec.2006.03.1064.
Li
, X. P.
, He
, T.
, and Rahman
, M.
, 2005
, “Tool Wear Characteristics and Their Effects on Nanoscale Ductile Mode Cutting of Silicon Wafer
,” Wear
, 259
(7
), pp. 1207
–1214
.10.1016/j.wear.2004.12.0205.
Ueda
, K.
, Sugita
, T.
, Hiraga
, H.
, and Iwata
, K.
, 1991
, “A J-Integral Approach to Material Removal Mechanisms in Microcutting of Ceramics
,” CIRP Ann.
, 40
(1
), pp. 61
–64
.10.1016/S0007-8506(07)61934-96.
Tanaka
, N.
, Ikawa
, S.
, and Shimada
, H.
, 2004
, “Brittle-Ductile Transition in Monocrystalline Silicon Analyzed by Molecular Dynamics Simulation
,” Proc. Inst. Mech. Eng., Part C
, 218
(6
), pp. 583
–590
.10.1243/0954406047742022137.
Cai
, M. B.
, Li
, X. P.
, and Rahman
, M.
,2007
, “Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation
,” Int. J. Mach. Tool Manuf.
, 47
(1
), pp. 75
–80
.10.1016/j.ijmachtools.2006.02.0168.
Arif
, M.
, Rahman
, M.
, and San
, W. Y.
, 2014
, “A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile–Brittle Transition in Milling Process of Brittle Material
,” ASME J. Manuf. Sci. Eng.
, 134
(5
), p. 051012
.10.1115/1.40074629.
Yan
, J.
, Takahashi
, Y.
, Tamaki
, J.
, Kubo
, A.
, Kuriyagawa
, T.
, and Sato
, Y.
, 2006
, “Ultraprecision Machining Characteristics of Poly-Crystalline Germanium
,” JSME Int. J., Ser. C
, 49
(1
), pp. 63
–69
.10.1299/jsmec.49.6310.
Patter
, J.
, Gao
, W.
, and Yasuto
, K.
, 2004
, “Ductile Regime Nano-Machining of Polycrystalline Silicon Carbide
,” ASME J. Manuf. Sci. Eng.
, 127
(3
), pp. 522
–532
.10.1115/1.194961411.
Siva
, V.
, Li
, X. P.
, and Liang
, S. Y.
, 2009
, “Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials
,” J. Mater. Process. Technol.
, 209
(7), pp. 3306
–3319
.10.1016/j.jmatprotec.2008.07.03612.
Cheng
, X.
, Wei
, T.
,Yang
, X. H.
, and Guo
, Y. B.
, 2014
, “Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials
,” ASME J. Manuf. Sci. Eng.
, 136
(5
), p. 051013
.10.1115/1.402799613.
Siva
, V.
, Li
, X. P.
, Fergani
, O.
, and Liang
, S. Y.
, 2013
, “Crystallographic Effects on Microscale Machining of Polycrystalline Brittle Materials
,” J. Micro Nano-Manuf.
, 1
(4
), p. 041001
.10.1115/1.402525514.
Fergani
, O.
, Tabei
, A.
, Garmestani
, H.
, and Liang
, S. Y.
, 2014
, “Prediction of Polycrystalline Materials Texture Evolution in Machining Via Viscoplastic Self-Consistent Modeling
,” J. Manuf. Process.
, 16
(4
), pp. 543
–550
.10.1016/j.jmapro.2014.07.00415.
Arif
, M.
, Xinquan
, Z.
, Rahman
, M.
, and Kumar
, S.
, 2013
, “A Predictive Model of the Critical Undeformed Chip Thickness for Ductile–Brittle Transition in Nano-Machining of Brittle Materials
,” Int. J. Mach. Tool Manuf.
, 64
, pp. 114
–119
.10.1016/j.ijmachtools.2012.08.00516.
Patten
, J. A.
, and Jacob
, J.
, 2008
, “Comparison Between Numerical Simulations and Experiments for Single-Point Diamond Turning of Single-Crystal Silicon Carbide
,” J. Manuf. Process.
, 10
(1
), pp. 28
–33
.10.1016/j.jmapro.2008.08.00117.
Hughes
, G. D.
, Smith
, S. D.
, Pande
, C. S.
, Johnson
, H. R.
, and Armstrong
, R. W.
, 1986
, “Hall–Petch Strenghening for the Microhardness of Twelve Nanometer Grain Diameter Electrodeposited Nickel
,” Scr. Metall.
, 20
(1), pp. 93
–97
.10.1016/0036-9748(86)90219-X18.
Siva
, V.
, 2007
, “Predictive Modeling for Ductile Machining of Brittle Materials
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.19.
Suzuki
, H. O. K.
, Yonenaga
, T.
, and Kirchner
, I.
, 1995
, “Yield Strength of Diamond
,” Phys. Rev. Lett.
, 75
(19
), pp. 3470
–3472
.10.1103/PhysRevLett.75.347020.
Kovacs
, G. T. A.
,1998
, Micromachined Transducers Sourcebook
, WCB/McGraw-Hill
, New York
.21.
Blanckenhagen
, B. V.
, Gumbsh
, P.
, and Artz
, E.
, 2001
, “Dislocation Sources in Discrete Dislocation Simulations of Thin-Film Plasticity and the Hall–Petch Relation
,” Modell. Simul. Mater. Sci.
, 9
(3), pp. 157
–169
.10.1088/0965-0393/9/3/30322.
Conrad
, H.
, 2004
, “Grain-Size Dependence of the Flow Stress of Cu From Millimeters to Nanometers
,” Metall. Mater. Trans. A
, 35
(9
), pp. 2681
–2695
.10.1007/s11661-004-0214-5Copyright © 2015 by ASME
You do not currently have access to this content.