A general dynamic modeling method of ball bearing–rotor systems is proposed. Gupta's bearing model is applied to predict the rigid body motion of the system considering the three-dimensional motions of each part (i.e., outer ring, inner ring, ball, and rotor), lubrication tractions, and bearing clearances. The finite element method is used to model the elastic deformation of the rotor. The dynamic model of the whole ball bearing–rotor system is proposed by integrating the rigid body motion and the elastic vibration of the rotor. An experiment is conducted on a test rig of rotor supported by two angular contact ball bearings. The simulation results are compared with the measured vibration responses to validate the proposed model. Good agreements show the accuracy of the proposed model and its ability to predict the dynamic behavior of ball bearing–rotor systems. Based on the proposed model, vibration responses of a two bearing–rotor system under different bearing clearances were simulated and their characteristics were discussed. The proposed model may provide guidance for structural optimization, fault diagnosis, dynamic balancing, and other applications.

References

References
1.
Jones
,
A. B.
,
1960
, “
A General Theory of Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
21
), pp.
309
320
.10.1115/1.3662587
2.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Essential Concepts of Bearing Technology
,
Taylor & Francis
,
Boca Raton, FL
.
3.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Advanced Concepts of Bearing Technology
,
Taylor & Francis
,
Boca Raton, FL
.
4.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Int. Mech. Eng., Part K
,
217
(
3
), pp.
201
211
.10.1243/14644190360713551
5.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3–5
), pp.
557
580
.10.1016/S0022-460X(03)00384-5
6.
Bai
,
C.
, and
Xu
,
Q.
,
2006
, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
,
294
(
1–2
), pp.
23
48
.10.1016/j.jsv.2005.10.005
7.
Tadina
,
M.
, and
Boltežar
,
M.
,
2011
, “
Improved Model of a Ball Bearing for the Simulation of Vibration Signals due to Faults During Run-Up
,”
J. Sound Vib.
,
330
(
17
), pp.
4287
4301
.10.1016/j.jsv.2011.03.031
8.
Ahmadi
,
A. M.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings—The Importance of Modeling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
309
326
.10.1016/j.ymssp.2014.06.006
9.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2014
, “
Nonlinear Dynamic Behavior of Balanced Rotor Bearing System Due to Various Localized Defects
,”
Proceedings of the International Conference on Advances in Tribology and Engineering Systems, Lecture Notes in Mechanical Engineering
, pp.
345
357
.10.1007/978-81-322-1656-8_30
10.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
312
318
.10.1115/1.3453363
11.
Gupta
,
P. K.
,
1984
,
Advanced Dynamic of Rolling Elements
,
Springer
,
New York
.10.1007/978-1-4612-5276-4
12.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.10.1115/1.4027334
13.
Sunnersjö
,
C. S.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
.10.1016/S0022-460X(78)80044-3
14.
Harsha
,
S. P.
,
2006
, “
Rolling Bearing Vibrations—The Effects of Surface Waviness and Radial Internal Clearance
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
7
(
2
), pp.
91
111
.10.1080/155022891010015
15.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2012
, “
Vibration Based Performance Prediction of Ball Bearing Caused by Localized Defects
,”
J. Nonlinear Dyn.
,
69
(
3
), pp.
847
875
.10.1007/s11071-011-0309-7
16.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J Mech. Sci.
,
52
(
9
), pp.
1176
1185
.10.1016/j.ijmecsci.2010.05.003
17.
Wang
,
L.
,
Cui
,
L.
,
Gu
,
L.
, and
Zheng
,
D.-Z.
,
2008
, “
Study on Dynamic Characteristics of Angular Ball Bearing With Non-Linear Vibration of Rotor System
,”
Proc. Int. Mech. Eng., Part C
,
222
(
9
), pp.
1800
1819
.10.1243/09544062JMES817
18.
Cheng
,
M.
,
Meng
,
G.
, and
Wu
,
B.
,
2011
, “
Nonlinear Dynamics of a Rotor–Ball Bearing System With Alford Force
,”
J. Vib. Control
,
18
(
1
) pp.
1
11
.10.1016/j.jconrel.2011.08.034
19.
Hu
,
Q. H.
,
Deng
,
S.
, and
Teng
,
H.
,
2011
A 5-DOF Model for Aeroengine Spindle Dual-Rotor System Analysis
,”
Chin. J. Aeronaut.
,
24
(
2
), pp.
224
234
.10.1016/S1000-9361(11)60027-7
20.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2002
, “
Nonlinear Excitation Model of Ball Bearing Waviness in a Rigid Rotor Supported by Two or More Ball Bearings Considering Five Degrees of Freedom
,”
ASME J. Tribo.
124
(
1
), pp.
82
90
.10.1115/1.1398289
21.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2003
, “
Analysis of a Ball Bearing With Waviness Considering the Centrifugal Force and Gyroscopic Moment of the Ball
,”
ASME J. Tribol.
,
125
(
3
), pp.
487
498
.10.1115/1.1538618
22.
Babu
,
C. K.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2012
, “
Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011006
.10.1115/1.4005140
23.
Chen
,
G.
,
2009
, “
A New Rotor–Ball Bearing–Stator Coupling Dynamics Model for Whole Aero-Engine Vibration
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
061009
.10.1115/1.4000475
24.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2013
, “
Stability Analysis of a Rotor–Bearing System With Time-Varying Bearing Stiffness due to Finite Number of Balls and Unbalanced Force
,”
J. Sound Vib.
,
332
(
25
), pp.
6768
6784
.10.1016/j.jsv.2013.08.002
25.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2014
, “
A New Nonlinear Dynamic Model of the Rotor-Bearing System Considering Preload and Varying Contact Angle of the Bearing
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
821
841
.10.1016/j.cnsns.2014.07.024
26.
Karacay
,
T.
, and
Akturk
,
N.
,
2008
, “
Vibration of a Grinding Spindle Supported by Angular Contact Ball Bearing
,”
Proc. Int. Mech. Eng., Part K
,
222
(
1
), pp.
61
75
.10.1243/14644193JMBD97
27.
Zhou
,
H.
,
Feng
,
G.
,
Luo
,
G.
,
Ai
,
Y.
, and
Sun
,
D.
,
2014
, “
The Dynamic Characteristics of a Rotor Supported on Ball Bearings With Different Floating Ring Squeeze Film Dampers
,”
Mech. Mach. Theory
,
80
, pp.
200
213
.10.1016/j.mechmachtheory.2014.04.016
28.
Bai
,
C.
,
Zhang
,
H.
, and
Xu
,
Q.
,
2010
, “
Experimental and Numerical Studies on Nonlinear Dynamic Behavior of Rotor System Supported by Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082502
10.1115/1.4000586
29.
Bai
,
C.
,
Zhang
,
H.
, and
Xu
,
Q.
,
2013
, “
Subharmonic Resonance of a Symmetric Ball Bearing–Rotor System
,”
Int. J. Nonlinear Mech.
,
50
, pp.
1
10
.10.1016/j.ijnonlinmec.2012.11.002
30.
Gao
,
S.
,
Long
,
X.
, and
Meng
,
G.
,
2008
, “
Nonlinear Response and Nonsmooth Bifurcations of an Unbalanced Machine-Tool Spindle-Bearing System
,”
Nonlinear Dyn., J. Nonlinear Dyn.
54
(
4
), pp.
365
377
.10.1007/s11071-008-9336-4
31.
Yuan
,
X.
,
Zhu
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Multi-Body Vibration Modeling of Ball Bearing–Rotor System Considering Single and Compound Multi-Defects
,”
Proc. Int. Mech. Eng., Part K
,
228
(
2
), pp.
199
212
.10.1177/0954406213486383
32.
Ma
,
H.
,
Li
,
H.
,
Zhao
,
X.
,
Niu
,
H.
, and
Wen
,
B.
,
2013
, “
Effects of Eccentric Phase Difference Between Two Discs on Oil-Film Instability in a Rotor-Bearing System
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
526
545
.10.1016/j.ymssp.2013.05.006
33.
Young
,
T. H.
,
Shiau
,
T. N.
, and
Kuo
,
Z. H.
,
2007
, “
Dynamic Stability of Rotor-Bearing Systems Subjected to Random Axial Forces
,”
J. Sound Vib.
,
305
(
3
), pp.
467
480
.10.1016/j.jsv.2007.04.016
34.
Villa
,
C.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci.
,
13
(
4
), pp.
804
821
.10.1016/j.cnsns.2006.06.012
35.
Sinou
,
J. J.
,
2009
, “
Non-Linear Dynamic and Contacts of an Unbalanced Flexible Rotor Supported on Ball Bearings
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1713
1732
.10.1016/j.mechmachtheory.2009.02.004
36.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
,
D. K.
,
2008
, “
Nonlinear Vibration Analysis of an Unbalanced Flexible Rotor Supported by Ball Bearings With Radial Internal Clearance
,”
ASME
Paper No. GT2008-51204.10.1115/GT2008-51204
37.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
, and
D. K.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME J. Eng Gas Turbines Power
,
133
(
8
), p.
082501
.10.1115/1.4002657
38.
Gupta
,
T. C.
, and
Gupta
,
K.
,
2013
, “
Correlation of Parameters to Instability and Chaos of a Horizontal Flexible Rotor Ball Bearing System
,”
ASME
Paper No. GT2013-95308.10.1115/GT2013-95308
39.
Lin.
,
C. W.
,
Tu
,
J. F.
, and
Kamman
,
J.
,
2003
, “
An Integrated Thermo-Mechanical-Dynamic Model to Characterize Motorized Machine Tool Spindles During Very High Speed Rotation
,”
Int. J. Mach. Tool Manu.
,
43
(
10
), pp.
1035
1050
.10.1016/S0890-6955(03)00091-9
40.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing System
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.10.1115/1.1802311
41.
Cao
,
H.
,
Holkup
,
T.
, and
Altintas
,
Y.
,
2011
, “
A Comparative Study on the Dynamics of High Speed Spindles With Respect to Different Preload Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
871
883
.10.1007/s00170-011-3356-9
42.
Cao
,
H.
,
Niu
,
L.
, and
He
,
Z.
,
2012
, “
Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System With a Bearing Defect
,”
Sensors
,
12
(
7
), pp.
8732
8754
.10.3390/s120708732
43.
Cao
,
H.
,
Holkup
,
T.
,
Chen
,
X.
, and
He
,
Z.
,
2012
, “
Study on Characteristic Variations of High-Speed Spindles Induced by Centrifugal Expansion Deformations
,”
J. Vibroeng.
,
14
(
3
), pp.
1278
1291
.
44.
Gagnol
,
V.
,
Bouzgarrou
,
C. B.
,
Ray
,
P.
, and
Barra
,
C.
,
2005
, “
Modelling Approach for a High Speed Machine Tool Spindle-Bearing System
,”
ASME
Paper No. DETC2005-84681.10.1115/DETC2005-84681
45.
Gagnol
,
V.
,
Bougarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Stability-Based Spindle Design Optimization
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
407
415
.10.1115/1.2673400
46.
Li
,
H.
, and
Shin
,
Y. C.
,
2004
, “
Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 1: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
148
158
.10.1115/1.1644545
47.
Li
,
H.
, and
Shin
,
Y. C.
,
2009
, “
Integration of Thermo-Dynamic Spindle and Machining Simulation Models for a Digital Machining System
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
648
661
.10.1007/s00170-008-1394-8
48.
Matthew
,
D. B.
,
Farshid
,
S.
,
Ankur
,
A.
, and
Archer
,
J.
,
2014
, “
Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling
,”
Tribol. Trans
.10.1080/10402004.2014.968699
You do not currently have access to this content.