Additive manufacturing, or 3D printing, is the process of building three-dimensional solid shapes by accumulating material laid out in sectional layers. Additive manufacturing has been recognized for enabling production of complex custom parts that are difficult to manufacture otherwise. However, the dependence on build orientation and physical limitations of printing processes invariably lead to geometric deviations between manufactured and designed shapes that are usually evaluated after manufacture. In this paper, we formalize the measurement of such deviations in terms of a printability map that simulates the printing process and partitions each printed layer into disjoint regions with distinct local measures of size. We show that manufacturing capabilities, such as printing resolution, and material specific design recommendations, such as minimal feature sizes, may be coupled in the printability map to evaluate expected deviations before manufacture. Furthermore, we demonstrate how partitions with size measures below required resolutions may be modified using properties of the medial axis transform and use the corrected printability map to construct a representation of the manufactured model. We conclude by discussing several applications of the printability map for additive manufacturing.

References

References
1.
Magics, “
Magics, the Most Powerful STL Editor
,” Accessed on Jan. 24,
2014
, http://software.materialise.com/magics
2.
Netfabb, Accessed on Jan. 24,
2014
, http://www.netfabb.com/
3.
Meshlab, Accessed on Jan. 24,
2014
, http://meshlab.sourceforge.net/
4.
Project Karma, “Will It 3D Print?” Accessed on Jan. 24,
2014
, http://www.willit3dprint.com/
5.
Project Miller, Accessed on Jan. 24,
2014
, http://labs.autodesk.com/utilities/miller/
6.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “
Voxel-Based Assessment of Printability of 3D Shapes
,”
Mathematical Morphology and Its Applications to Image and Signal Processing
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
393
404
.10.1007/978-3-642-21569-8_34
7.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graphics
,
31
(
4
), p.
48
.10.1145/2185520.2335399
8.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graphics
,
31
(
6
), p.
129
.
9.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p.
130
.10.1145/2366145.2366149
10.
Prévost
,
R.
,
Whiting
,
E.
,
Lefebvre
,
S.
, and
Sorkine-Hornung
,
O.
,
2013
, “
Make It Stand: Balancing Shapes for 3D Fabrication
,”
ACM Trans. Graphics
,
32
(
4
), p.
81
.10.1145/2461912.2461957
11.
Serra
,
J.
,
1982
,
Image Analysis and Mathematical Morphology
,
Academic Press
,
London
(Review by 1983, Fensen, E. B., J. Microsc., 131, p. 258), Mathematics, Review Article General Article, Technique Staining Microscopy, Cell Size (PMBD No. 185707888).
12.
Giardina
,
C. R.
, and
Dougherty
,
E. R.
,
1988
,
Morphological Methods in Image and Signal Processing
,
Prentice Hall
,
Engelwood Cliffs, NJ
, Vol.
1
.
13.
Middleditch
,
A. E.
,
1988
, “
Application of Vector Sum Operator
,”
Comput. Aided Des.
,
20
(
4
), pp.
183
188
.10.1016/0010-4485(88)90275-8
14.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
401
424
.10.1007/s00158-006-0087-x
15.
Nelaturi
,
S.
,
2011
, “
Configuration Modeling
,” Ph.D. thesis, University of Wisconsin, Madison, WI.
16.
Lozano-Perez
,
T.
,
1983
, “
Spatial Planning: A Configuration Space Approach
,”
IEEE Trans. Comput.
,
100
(
2
), pp.
108
120
.10.1109/TC.1983.1676196
17.
Vermeer
,
P. J.
,
1994
, “
Medial Axis Transform to Boundary Representation Conversion
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
18.
Murta
,
A.
,
2000
, “
A General Polygon Clipping Library
,” Advanced Interfaces Group, Department of Computer Science, University of Manchester, Manchester, UK.
19.
Angusj, “Clipper: An Open Source Freeware Library for Clipping and Offsetting Lines and Polygons,” Accessed on Jan. 26,
2014
, http://www.angusj.com/delphi/clipper.php
20.
Ahn
,
J.-W.
,
Kim
,
M.-S.
, and
Lim
,
S.-B.
,
1993
, “
Approximate General Sweep Boundary of a 2D Curved Object
,”
CVGIP: Graphical Models Image Process.
,
55
(
2
), pp.
98
128
.10.1006/cgip.1993.1008
21.
Lee
,
I.-K.
,
Kim
,
M.-S.
, and
Elber
,
G.
,
1998
, “
Polynomial/Rational Approximation of Minkowski Sum Boundary Curves
,”
Graphical Models Image Process.
,
60
(
2
), pp.
136
165
.10.1006/gmip.1998.0464
22.
Lieutier
,
A.
,
2004
, “
Any Open Bounded Subset of Rn Has the Same Homotopy Type as Its Medial Axis
,”
Comput. Aided Des.
,
36
(
11
), pp.
1029
1046
.
23.
Shih
,
F. Y.
, and
Pu
,
C. C.
,
1995
, “
A Skeletonization Algorithm by Maxima Tracking on Euclidean Distance Transform
,”
Pattern Recognit.
,
28
(
3
), pp.
331
341
.10.1016/0031-3203(94)00104-T
24.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams: A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.10.1145/116873.116880
25.
Fortune
,
S.
,
1992
, “
Voronoi Diagrams and Delaunay Triangulations
,”
Computing in Euclidean Geometry
, D. Z. Du and F. K. Hwang, eds., World Scientific Publishing Company, London, Vol.
1
, pp.
193
233
.10.1142/9789814355858_0006
26.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
27.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
You do not currently have access to this content.