For on-machine measurement of workpiece position, orientation, and geometry on machine tools, five-axis continuous (scanning) measurement by using a laser displacement sensor has a strong advantage in its efficiency, compared to conventional discrete measurement using a touch-triggered contact probe. In any on-machine measurement schemes, major contributors to their measurement uncertainty are error motions of the machine tool itself. This paper formulates the influence of geometric errors of rotary axis average lines on the measurement uncertainty of the five-axis on-machine measurement by using a laser displacement sensor. To validate the present simulator, experimental comparison of measured and simulated trajectories is conducted on five-axis on-machine measurement of a precision sphere of the precalibrated geometry. For total 28 paths measured on the spherical surface, an error in the simulated trajectories from measured trajectories (properly low-pass filtered) was at maximum 5 μm. Uncertainty assessment demonstration for more practical application example of a turbine blade measurement is also presented.

References

References
1.
Mears
,
L.
,
Roth
,
J. T.
,
Djurdjanovic
,
D.
,
Yang
,
X.
, and
Kurfess
,
T.
,
2009
, “
Quality and Inspection of Machining Operations: CMM Integration to the Machine Tool
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051006
.10.1115/1.3184085
2.
ISO 230-10:2011
,
2010
, “Test Code for Machine Tools – Part 10: Determination of Measuring Performance of Probing Systems of Numerically Controlled Machine Tools.”
3.
Nakagawa
,
H.
,
Hirogaki
,
T.
,
Kaji
,
Y.
,
Kita
,
Y.
, and
Kakino
,
Y.
,
2003
, “
Insitu Suitable Controlled Scan of Laser Stylus for Point Measuring of Free Surface
,”
J. Jpn. Soc. Precis. Eng.
,
69
(
10
), pp.
1423
1427
(in Japanese).10.2493/jjspe.69.1423
4.
Watanabe
,
Y.
,
Ohmori
,
H.
,
Lin
,
W.
,
Katahira
,
K.
, and
Makinouchi
,
A.
,
2003
, “
On-Machine Profile Measuring System With Laser-Probe
,”
Proceedings of International Conference on Leading Edge Manufacturing in 21st Century
, pp.
65
68
.
5.
Ko
,
T. J.
,
Park
,
J. W.
,
Kim
,
H. S.
, and
Kim
,
S. H.
,
2007
, “
On-Machine Measurement Using a Noncontact Sensor Based on a CAD Model
,”
Int. J. Adv. Manuf. Technol.
,
32
(
7–8
), pp.
739
746
.10.1007/s00170-005-0383-4
6.
Ihara
,
Y.
, and
Ohtsuka
,
H.
,
2009
, “
On-Machine Measurement Technologies
,”
J. Jpn. Soc. Precis. Eng.
,
75
(
11
), pp.
1281
1284
(in Japanese).10.2493/jjspe.75.1281
7.
Abe
,
G.
,
Aritoshi
,
M.
,
Tomita
,
T.
, and
Shirase
,
K.
,
2011
, “
Development of On-Machine Measurement System Utilizing Line Laser Displacement Sensor
,”
Int. J. Autom. Technol.
,
5
(
5
), pp.
708
714
.
8.
Jung
,
J. H.
,
Choi
,
J. P.
, and
Lee
,
S. J.
,
2006
, “
Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-Machine Measurement
,”
J. Mater. Process. Technol.
,
174
(
1–3
), pp.
56
66
.10.1016/j.jmatprotec.2004.12.014
9.
Ibaraki
,
S.
, and
Knapp
,
W.
,
2012
, “
Indirect Measurement of Volumetric Accuracy for Three-axis and Five-axis Machine Tools: A Review
,”
Int. J. Autom. Technol.
,
6
(
2
), pp.
110
124
.
10.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines –An Update
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
560
575
.10.1016/j.cirp.2008.09.008
11.
Hocken
,
R. J.
,
Simpson
,
J. A.
,
Borchardt
,
B.
,
Lazar
,
J.
,
Reeve
,
C.
, and
Stein
,
P.
,
1977
, “
Three Dimensional Metrology
,”
Ann. CIRP
,
26
(
1
), pp.
403
408
.
12.
Abbaszaheh-Mir
,
Y.
,
Mayer
,
J. R. R.
,
Clotier
,
G.
, and
Fortin
,
C.
,
2002
, “
Theory and Simulation for the Identification of the Link Geometric Errors for a Five-Axis Machine Tool Using a Telescoping Magnetic Ball-Bar
,”
Int. J. Prod. Res.
,
40
(
18
), pp.
4781
4797
.10.1080/00207540210164459
13.
Inasaki
,
I.
,
Kishinami
,
K.
,
Sakamoto
,
S.
,
Sugimura
,
N.
,
Takeuchi
,
Y.
, and
Tanaka
,
F.
,
1997
,
Shaper Generation Theory of Machine Tools – Its Basis and Applications
,
Yokendo
,
Tokyo
(in Japanese).
14.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools – Part I: Modeling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031006
.10.1115/1.3123335
15.
Tutunea-Fatan
,
O. R.
, and
Feng
,
H.-Y.
,
2005
, “
Determination of Geometry-Based Errors for Interpolated Tool Paths in Five-Axis Surface Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
60
67
.10.1115/1.1831285
16.
Hong
,
C.
, and
Ibaraki
,
S.
,
2013
, “
Non-Contact R-Test With Laser Displacement Sensors for Error Calibration of Five-Axis Machine Tools
,”
Precis. Eng.
,
37
, pp.
159
171
.10.1016/j.precisioneng.2012.07.012
17.
Kimura
,
Y.
,
Matsubara
,
A.
, and
Koike
,
Y.
,
2012
, “
Analysis of Measurement Errors of a Diffuse-Reflection-Type Laser Displacement Sensor for Profile Measurement
,”
Int. J. Autom. Technol.
,
6
(
6
), pp.
724
727
.
18.
Dorsch
,
R. G.
,
Häusler
,
G.
, and
Herrmann
,
J. M.
,
1994
, “
Laser Triangulation: Fundamental Uncertainty in Distance Measurement
,”
Appl. Opt.
,
33
(
7
), pp.
1306
1314
.10.1364/AO.33.001306
19.
ISO/DIS 10791-6
,
2012
, “Test Conditions for Machining Centers, Part 6: Accuracy of Speeds and Interpolations.”
20.
ISO 841
,
2001
, “Industrial Automation Systems and Integration–Numerical Control of Machines–Coordinate System and Motion Nomenclature.”
21.
ISO/CDTR 16907
,
2013
, “Numerical Compensation of Geometric Errors of Machine Tools.”
22.
ISO 230-7:2006
,
2006
, “Test Code for Machine Tools – Part 7: Geometric Accuracy of Axes of Rotation.”
23.
ISO 230-1:2012
,
2012
, “Test Code for Machine Tools – Part 1: Geometric Accuracy of Machines Operating Under No-Load or Quasi-Static Conditions.”
24.
Hong
,
C.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
,
2011
, “
Influence of Position-Dependent Geometric Errors of Rotary Axes on a Machining Test of Cone Frustum by Five- Axismachine Tools
,”
Precis. Eng.
,
35
(
1
), pp.
1
11
.10.1016/j.precisioneng.2010.09.004
25.
Ibaraki
,
S.
,
Oyama
,
C.
, and
Otsubo
,
H.
,
2011
, “
Construction of an Error Map of Rotary Axes on a Five-Axis Machining Center by Static R-Test
,”
Int. J. Mach. Tools Manuf.
,
51
, pp.
190
200
.10.1016/j.ijmachtools.2010.11.011
26.
Ibaraki
,
S.
,
Iritani
,
T.
, and
Matsushita
,
T.
,
2013
, “
Error Map Construction for Rotary Axes on Five-Axis Machine Tools by On-the-Machine Measurement Using a Touch-Trigger Probe
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
21
29
.10.1016/j.ijmachtools.2013.01.001
27.
Sensors, Vision, Measurement and Microscopes,” http://www.keyence.com/
28.
ISO/DIS 10791-1:2012
,
2012
, “Test Conditions for Machining Centres – Part 1: Geometric Tests for Machines With Horizontal Spindle (Horizontal Z-Axis).”
29.
Bringmann
,
B.
, and
Knapp
,
W.
,
2006
, “
Model-Based `Chase-the-Ball’ Calibration of a 5-Axis Machining Center
,”
Ann. CIRP
,
55
(
1
), pp.
531
534
.10.1016/S0007-8506(07)60475-2
30.
Nagai
,
Y.
, and
Ibaraki
,
S.
,
2013
, “
Error Calibration of 5-Axis Machine Tools by On-Machine Measurement System Using a Laser Displacement Sensor
,”
Proceedings of the 7th International Conference on Leading Edge Manufacturing in 21st Century
, pp.
313
318
.
31.
Baribeau
,
R.
, and
Rioux
,
M.
,
1991
, “
Influence of Speckle on Laser Range Finders
,”
Appl. Opt.
,
30
(
20
), pp.
2873
2878
.10.1364/AO.30.002873
You do not currently have access to this content.