The selective laser melting (SLM), due to its unique additive manufacturing (AM) processing manner and laser-induced nonequilibrium rapid melting/solidification mechanism, has a promising potential in developing new metallic materials with tailored performance. In this work, SLM of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance (e.g., densification, microhardness, and wear property) of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input laser energy density increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in the larger degree of the formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied laser energy density increased. The sufficiently high density (∼96% theoretical density (TD)) was achieved for the laser linear energy density larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, the elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 × 10−5 mm3 N−1 m−1. At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip- and particle-structured Al4SiC4, increased markedly. The significant grain coarsening and the formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites. These findings in the present work are applicable and/or transferrable to other laser-based powder processing processes, e.g., laser cladding, laser metal deposition, or laser engineered net shaping.

References

References
1.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
.10.1115/1.4003691
2.
Kamara
,
A. M.
,
Marimuthu
,
S.
, and
Li
,
L.
,
2011
, “
A Numerical Investigation into Residual Stress Characteristics in Laser Deposited Multiple Layer Waspaloy Parts
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031013
.10.1115/1.4003833
3.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
.10.1115/1.4025737
4.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
5.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
6.
Tsopanos
,
S.
,
Mines
,
R. A. W.
,
McKown
,
S.
,
Shen
,
Y.
,
Cantwell
,
W. J.
,
Brooks
,
W.
, and
Sutcliffe
,
C. J.
,
2010
, “
The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041011
.10.1115/1.4001743
7.
Chen
,
T. B.
, and
Zhang
,
Y. W.
,
2007
, “
Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
575
582
.10.1115/1.2716714
8.
Chen
,
T. B.
, and
Zhang
,
Y. W.
,
2006
, “
Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
299
306
.10.1115/1.2122947
9.
Xiao
,
B.
, and
Zhang
,
Y. W.
,
2008
, “
Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041002
.10.1115/1.2951948
10.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.10.1179/1743280411Y.0000000014
11.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
.10.1016/j.cirp.2007.10.004
12.
Gu
,
D. D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G. B.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.10.1016/j.actamat.2012.04.006
13.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.10.1016/j.jmatprotec.2010.09.019
14.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
.10.1016/j.matdes.2011.07.067
15.
Sercombe
,
T. B.
, and
Schaffer
,
G. B.
,
2003
, “
Rapid Manufacturing of Aluminum Components
,”
Science
,
301
(
5637
), pp.
1225
1227
.10.1126/science.1086989
16.
Gu
,
D. D.
,
Dai
,
D. H.
,
Zhang
,
G. Q.
, and
Wang
,
H. Q.
,
2012
, “
Growth Mechanisms of In Situ TiC in Laser Melted Ti–Si–C Ternary System
,”
App. Phys. Lett.
,
101
(
17
), p.
171603
.10.1063/1.4764055
17.
Gusarov
,
A. V.
,
Yadroitsev
,
I.
,
Bertrand
,
Ph.
, and
Smurov
,
I.
,
2009
, “
Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting
,”
ASME J. Heat Transfer
,
131
(
7
), p.
072101
.10.1115/1.3109245
18.
Li
,
Y. L.
, and
Gu
,
D. D.
,
2014
, “
Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder
,”
Mater. Des.
,
63
, pp.
856
867
.10.1016/j.matdes.2014.07.006
19.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.10.1108/13552549510078113
20.
Das
,
M.
,
Balla
, V
. K.
,
Basu
,
D.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2010
, “
Laser Processing of SiC-Particle-Reinforced Coating on Titanium
,”
Scr. Mater.
,
63
(
4
), pp.
438
441
.10.1016/j.scriptamat.2010.04.044
21.
Lavernia
,
E. J.
, and
Srivatsan
,
T. S.
,
2010
, “
The Rapid Solidification Processing of Materials: Science, Principles, Technology, Advances, and Applications
,”
J. Mater. Sci.
,
45
(
2
), pp.
287
325
.10.1007/s10853-009-3995-5
22.
Bartkowiak
,
K.
,
Ullrich
,
S.
,
Frick
,
T.
, and
Schmidt
,
M.
,
2011
, “
New Developments of Laser Processing Aluminium Alloys Via Additive Manufacturing Technique
,”
Phys. Procedia
,
12
(
Part A
), pp.
393
401
.10.1016/j.phpro.2011.03.050
23.
Dadbakhsh
,
S.
, and
Hao
,
L.
,
2012
, “
Effect of Al Alloys on Selective Laser Melting Behaviour and Microstructure of In Situ Formed Particle Reinforced Composites
,”
J. Alloy Compd.
,
541
, pp.
328
334
.10.1016/j.jallcom.2012.06.097
24.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011010
.10.1115/1.4000882
25.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes-Part II: Layer-to-Layer Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011011
.10.1115/1.4000883
26.
Prashanth
,
K. G.
,
Scudino
,
S.
,
Klauss
,
H. J.
,
Surreddi
,
K. B.
,
Löber
,
L.
,
Wang
,
Z.
,
Chaubey
,
A. K.
,
Kühn
,
U.
, and
Eckert
,
J.
,
2014
, “
Microstructure and Mechanical Properties of Al–12Si Produced by Selective Laser Melting: Effect of Heat Treatment
,”
Mater. Sci. Eng. A
,
590
, pp.
153
160
.10.1016/j.msea.2013.10.023
27.
Zhang
,
B. C.
,
Liao
,
H. L.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Properties of Selective Laser Melting Mg–9%Al Powder Mixture
,”
Mater. Des.
,
34
, pp.
753
758
.10.1016/j.matdes.2011.06.061
28.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
,
2006
, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1459
1468
.10.1016/j.ijmachtools.2005.09.005
29.
Kruth
,
J. P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.
,
23
(
4
) pp.
357
371
.10.1108/01445150310698652
30.
Bassani
,
P.
,
Capello
,
E.
,
Colombo
,
D.
,
Previtali
,
B.
, and
Vedani
,
M.
,
2007
, “
Effect of Process Parameters on Bead Properties of A359/SiC MMCs Welded by Laser
,”
Compos. Part A
,
38
(
4
), pp.
1089
1098
.10.1016/j.compositesa.2006.04.014
31.
Eliasson
,
J.
, and
Sandström
,
R.
,
1995
, “
Applications of Aluminium Matrix Composites
,”
Key Eng. Mater.
,
104–107
, pp.
3
36
.10.4028/www.scientific.net/KEM.104-107.3
32.
Su
,
H.
,
Gao
,
W. L.
,
Zhang
,
H.
,
Liu
,
H. B.
,
Lu
,
J. A.
, and
Lu
,
Z.
,
2010
, “
Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir Casting Process
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061007
.10.1115/1.4002851
33.
Yang
,
Y.
, and
Li
,
X. C.
,
2007
, “
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
252
255
.10.1115/1.2194064
34.
Maruyama
,
B.
, and
Hunt
,
W. H.
,
1999
, “
Discontinuously Reinforced Aluminum: Current Status and Future Direction
,”
JOM
,
51
(
11
), pp.
59
61
.10.1007/s11837-999-0225-1
35.
Prasada
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminum Metal–Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
453
.10.1023/B:TRIL.0000044492.91991.f3
36.
Asgharzadeh
,
H.
, and
Simchi
,
A.
,
2009
, “
Supersolidus Liquid Phase Sintering of Al6061/SiC Metal Matrix Composites
,”
Powder Metall.
,
52
(
1
). pp.
28
35
.10.1179/174329008X286721
37.
Simchi
,
A.
, and
Godlinski
,
D.
,
2008
, “
Effect of SiC Particles on the Laser Sintering of Al–7Si–0.3Mg Alloy
,”
Scr. Mater.
,
59
(
2
), pp.
199
202
.10.1016/j.scriptamat.2008.03.007
38.
Simchi
,
A.
, and
Godlinski
,
D.
,
2011
, “
Densification and Microstructural Evolution During Laser Sintering of A356/SiC Composite Powders
,”
J. Mater. Sci.
,
46
(
5
), pp.
1446
1454
.10.1007/s10853-010-4943-0
39.
Anandkumar
,
R.
,
Almeida
,
A.
,
Colaço
,
R.
,
Vilar
,
R.
,
Ocelik
,
V.
, and
De Hosson
,
J.
,
Th.
M.
,
2007
, “
Microstructure and Wear Studies of Laser Clad Al–Si/SiC(p) Composite Coatings
,”
Surf. Coat. Technol.
,
201
(
24
), pp.
9497
9505
.10.1016/j.surfcoat.2007.04.003
40.
Ureña
,
A.
,
Rodrigo
,
P.
,
Gil
,
L.
,
Escalera
,
M. D.
, and
Baldonedo
,
J. L.
,
2001
, “
Interfacial Reactions in an Al–Cu–Mg (2009)/SiCw Composite During Liquid Processing Part II Arc Welding
,”
J. Mater. Sci.
,
36
(
2
), pp.
429
439
.10.1023/A:1004832713790
41.
Gu
,
D. D.
, and
Shen
,
Y. F.
,
2009
, “
Effects of Processing Parameters on Consolidation and Microstructure of W–Cu Components by DMLS
,”
J. Alloys Compd.
,
473
(
1–2
), pp.
107
115
.10.1016/j.jallcom.2008.05.065
42.
Oliver Seely
,
Jr.
,
2000
, “
Density and Archimedes' Principle
,” http://www.csudh.edu/oliver/satcoll/archmede.htm
43.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Boillat
,
E.
, and
Glardon
,
R.
,
2003
, “
Sintering of Commercially Pure Titanium Powder With a Nd:YAG Laser Source
,”
Acta Mater.
,
51
(
6
), pp.
1651
1662
.10.1016/S1359-6454(02)00567-0
44.
Xu
,
G.
,
Schultz
,
W. W.
, and
Kannatey-Asibu
,
E.
, 2004, “
Application of a Front Tracking Method in Gas Metal Arc Welding (GMAW) Simulation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
590
597
.10.1115/1.1949622
45.
Wu
,
Y. F.
,
Kim
,
G. Y.
,
Anderson
, I
. E.
, and
Lograsso
,
T. A.
,
2010
, “
Experimental Study on Viscosity and Phase Segregation of Al–Si Powders in Microsemisolid Powder Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011003
.10.1115/1.4000636
46.
Jeswani
,
A. J.
, and
Roux
,
J. A.
,
2007
, “
Manufacturing Modeling of Three-Dimensional Resin Injection Pultrusion Process Control Parameters for Polyester/Glass Rovings Composites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
143
156
.10.1115/1.2383148
47.
Gu
,
D. D.
, and
Shen
,
Y. F.
,
2006
, “
Processing and Microstructure of Submicron WC–Co Particulate Reinforced Cu Matrix Composites Prepared by Direct Laser Sintering
,”
Mater. Sci. Eng. A
,
435–436
, pp.
54
61
.10.1016/j.msea.2006.07.105
48.
Zhou
,
X. B.
, and
De Hosson
,
J.
, and
Th.
,
M.
,
1996
, “
Reactive Wetting of Liquid Metals on Ceramic Substrates
,”
Acta Mater.
,
44
(
2
), pp.
421
426
.10.1016/1359-6454(95)00235-9
49.
Buchbinder
,
D.
,
Schleifenbaum
,
H.
, and
Heidrich
,
S.
,
2011
. “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
(
Part A
), pp.
271
278
.10.1016/j.phpro.2011.03.035
50.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kwon
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti–6Al–4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.10.1115/1.4027674
51.
Bassoli
,
E.
,
Atzeni
,
E.
, and
Iuliano
,
L.
,
2011
, “
Grinding Micromechanisms of a Sintered Friction Material
,”
ASME J. Manuf. Sci. Eng.
,
133
(
1
), p.
014501
.10.1115/1.4003336
52.
Jain
,
A.
,
Basu
,
B.
,
Kumar
,
B. V.
,
M.
,
Harshavardhan
, and
Sarkar
,
J.
,
2010
, “
Grain Size–Wear Rate Relationship for Titanium in Liquid Nitrogen Environment
,”
Acta Mater.
,
58
(
7
), pp.
2313
2323
.10.1016/j.actamat.2009.12.017
You do not currently have access to this content.