Additive manufacturing (AM) of metallic structures by laser based layered manufacturing processes involve thermal damages. In this work, the feasibility of mask-less electrochemical deposition as a nonthermal metallic AM process has been studied. Layer by layer localized electrochemical deposition using a microtool tip has been performed to manufacture nickel microstructures. Three-dimensional free hanging structures with about 600 μm height and 600 μm overhang are manufactured to establish the process capability. An inhouse built CNC system was integrated in this study with an electrochemical cell to achieve 30 layers thick microparts in about 5 h by AM directly from STL files generated from corresponding CAD models. The layer thickness achieved in this process was about 10 μm and the minimum feature size depends on the tool width. Simulation studies of electrochemical deposition performed to understand the pulse wave characteristics and their effects on the localization of the deposits.

References

1.
Bandyopadhyay
,
A.
,
Krishna
,
B.
,
Xue
,
W.
, and
Bose
,
S.
,
2009
, “
Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants
,”
J. Mater. Sci.: Mater. Med.
,
20
(
1
), pp.
29
34
10.1007/s10856-008-3478-2.
2.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.10.1007/s11465-013-0248-8
3.
Lyons
,
B.
,
2012
, “
Additive Manufacturing in Aerospace: Examples and Research Outlook
,”
The Bridge
, 42(1), pp. 13-19.https://www.nae.edu/Publications/Bridge/57865/58467.aspx
4.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2012
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.10.1007/s00170-012-4605-2
5.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
6.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
7.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
.10.1016/j.jmatprotec.2003.11.051
8.
Bard
,
A. J.
,
Huesser
,
O. E.
, and
Craston
,
D. H.
,
1990
, “
High Resolution Deposition and Etching in Polymer Films
,” Google Patents, Patent No. US4968390A.
9.
Kadekar
,
V.
,
Fang
,
W.
, and
Liou
,
F.
,
2005
, “
Deposition Technologies for Micromanufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
787
795
.10.1115/1.1811118
10.
Madden
,
J. D.
, and
Hunter
,
I. W.
,
1996
, “
Three-Dimensional Microfabrication by Localized Electrochemical Deposition
,”
J. Microelectromech. Syst.
,
5
(
1
), pp.
24
32
.10.1109/84.485212
11.
El
‐Giar
,
E. M.
,
Said
,
R. A.
,
Bridges
,
G. E.
, and
Thomson
, and
D. J.
,
2000
, “
Localized Electrochemical Deposition of Copper Microstructures
,”
J. Electrochem. Soc.
,
147
(
2
), pp.
586
591
.10.1149/1.1393237
12.
Jansson
,
A.
,
Thornell
,
G.
, and
Johansson
,
S.
,
2000
, “
High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel
,”
J. Electrochem. Soc.
,
147
(
5
), pp.
1810
1817
.10.1149/1.1393439
13.
Yeo
,
S. H.
, and
Choo
,
J. H.
,
2001
, “
Effects of Rotor Electrode in the Fabrication of High Aspect Ratio Microstructures by Localized Electrochemical Deposition
,”
J. Micromech. Microeng.
,
11
(
5
), pp.
435
442
.10.1088/0960-1317/11/5/301
14.
Lin
,
J. C.
,
Chang
,
T. K.
,
Yang
,
J. H.
,
Jeng
,
J. H.
,
Lee
,
D. L.
, and
Jiang
,
S. B.
,
2009
, “
Fabrication of a Micrometer Ni–Cu Alloy Column Coupled With a Cu Micro-Column for Thermal Measurement
,”
J. Micromech. Microeng.
,
19
(
1
). p.
015030
.10.1088/0960-1317/19/1/015030
15.
Cohen
,
A.
,
Zhang
,
G.
,
Tseng
,
F. G.
,
Frodis
,
U.
,
Mansfeld
,
F.
, and
Will
,
P.
,
1999
, “
EFAB: Rapid, Low-Cost Desktop Micromachining of High Aspect Ratio True 3-D MEMS
,”
Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems
, MEMS '99, Orlando, FL, Jan. 21–21, pp.
244
251
.
16.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R.
,
2006
, “
Finite Element Prediction of Thermal Stresses and Deformations in Layered Manufacturing of Metallic Parts
,”
Acta Mech.
,
183
(
1–2
), pp.
61
79
.10.1007/s00707-006-0329-4
17.
Regenfuß
,
P.
,
Ebert
,
R.
,
Klötzer
,
S.
,
Hartwig
,
L.
,
Exner
,
H.
,
Brabant
,
T.
, and
Petsch
,
T.
,
2004
, “
Industrial Laser Micro Sintering
,”
Proceedings of the 4th LANE
, Erlangen, Germany, Sept. 21–24, pp.
413
424
.
18.
Clare
,
A. T.
,
Chalker
,
P. R.
,
Davies
,
S.
,
Sutcliffe
,
C. J.
, and
Tsopanos
,
S.
,
2008
, “
Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications
,”
Int. J. Mech. Mater. Des.
,
4
(
2
), pp.
181
187
.10.1007/s10999-007-9032-4
19.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer-Verlag
,
New York
.
20.
Derby
,
B.
, and
Reis
,
N.
,
2003
, “
Inkjet Printing of Highly Loaded Particulate Suspensions
,”
MRS Bull.
,
28
(
11
), pp.
815
818
.10.1557/mrs2003.230
21.
Wang
,
F.
,
Shor
,
L.
,
Darling
,
A.
,
Khalil
,
S.
,
Sun
,
W.
,
Güçeri
,
S.
, and
Lau
,
A.
,
2004
, “
Precision Extruding Deposition and Characterization of Cellular Poly-Caprolactone Tissue Scaffolds
,”
Rapid Prototyping J.
,
10
(
1
), pp.
42
49
.10.1108/13552540410512525
22.
Yim
,
P.
,
1996
, “
The Role of Surface Oxidation in the Break-Up of Laminar Liquid Metal Jets
,” Ph. D. thesis, Massachusetts Institute of Technology, University in Cambridge, MA.
23.
Lai
,
W.-H.
, and
Chen
,
C.-C.
,
2005
, “
Effect of Oxidation on the Breakup and Monosized Droplet Generation of the Molten Metal Jet
,”
Atomization Sprays
,
15
(
1
), pp.
81
102
.10.1615/AtomizSpr.v15.i1.50
24.
Said
,
R. A.
,
2004
, “
Localized Electro-Deposition (LED): The March Toward Process Development
,”
Nanotechnology
,
15
(
10
), pp.
S649
S659
.10.1088/0957-4484/15/10/025
25.
Said
,
R. A.
,
2004
, “
Adaptive Tip-Withdrawal Control for Reliable Microfabrication by Localized Electrodeposition
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
822
832
.10.1109/JMEMS.2004.835774
26.
Chang
,
T. K.
,
Lin
,
J. C.
,
Yang
,
J. H.
,
Yeh
,
P. C.
,
Lee
,
D. L.
, and
Jiang
,
S. B.
,
2007
, “
Surface and Transverse Morphology of Micrometer Nickel Columns Fabricated by Localized Electrochemical Deposition
,”
J. Micromech. Microeng.
,
17
(
11
), pp.
2336
2343
.10.1088/0960-1317/17/11/022
27.
Lin
,
J. C.
,
Chang
,
T. K.
,
Yang
,
J. H.
,
Chen
,
Y. S.
, and
Chuang
,
C. L.
,
2010
, “
Localized Electrochemical Deposition of Micrometer Copper Columns by Pulse Plating
,”
Electrochim. Acta
,
55
(
6
), pp.
1888
1894
.10.1016/j.electacta.2009.11.002
28.
Habib
,
M. A.
,
Gan
,
S. W.
, and
Rahman
,
M.
,
2009
, “
Fabrication of Complex Shape Electrodes by Localized Electrochemical Deposition
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4453
4458
.10.1016/j.jmatprotec.2008.10.041
29.
Lin
,
J.
,
Chang
,
T.
,
Yang
,
J.
,
Chen
,
Y.
, and
Chuang
,
C.
,
2010
, “
Localized Electrochemical Deposition of Micrometer Copper Columns by Pulse Plating
,”
Electrochim. Acta
,
55
(
6
), pp.
1888
1894
.10.1016/j.electacta.2009.11.002
30.
Chandrasekar
,
M. S.
, and
Pushpavanam
,
M.
,
2008
, “
Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications
,”
Electrochim. Acta
,
53
(
8
), pp.
3313
3322
.10.1016/j.electacta.2007.11.054
31.
Gamburg
,
Y.
, and
Zangari
,
G.
,
2011
, “
Non-Steady State Electrodeposition Processes and Electrochemical Methods
,”
Theory and Practice of Metal Electrodeposition
,
Springer
,
New York
, pp.
189
204
10.1007/978-1-4419-9669-5_9.
32.
Schuster
,
R.
,
2007
, “
Electrochemical Microstructuring With Short Voltage Pulses
,”
ChemPhysChem
,
8
(
1
), pp.
34
39
.10.1002/cphc.200600401
33.
Kamaraj
,
A. B.
, and
Sundaram
,
M. M.
,
2013
, “
Mathematical Modeling and Verification of Pulse Electrochemical Micromachining of Microtools
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1055
1061
.10.1007/s00170-013-4896-y
34.
Hoar
,
T.
, and
Agar
,
J.
,
1947
, “
Factors in Throwing Power Illustrated by Potential-Current Diagrams
,”
Discuss. Faraday Soc.
,
1
, pp.
162
168
.10.1039/df9470100162
35.
Abdel-Hamid
,
Z.
,
1998
, “
Improving the Throwing Power of Nickel Electroplating Baths
,”
Mater. Chem. Phys.
,
53
(
3
), pp.
235
238
.10.1016/S0254-0584(97)02070-1
36.
Brant
,
A.
,
Sundaram
,
M.
, and
Kamaraj
,
A. B.
,
2014
, “
Finite Element Simulation of Localized Electrochemical Deposition for Mask-Less Electrochemical Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
, (to be published).10.1115/1.4028198
37.
Dolenc
,
A.
, and
Mäkelä
,
I.
,
1994
, “
Slicing Procedures for Layered Manufacturing Techniques
,”
Comput.-Aided Des.
,
26
(
2
), pp.
119
126
.10.1016/0010-4485(94)90032-9
38.
Ryu
,
S. H.
,
2009
, “
Micro Fabrication by Electrochemical Process in Citric Acid Electrolyte
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2831
2837
.10.1016/j.jmatprotec.2008.06.044
39.
Schuster
,
R.
,
Kirchner
,
V.
,
Allongue
,
P.
, and
Ertl
,
G.
,
2000
, “
Electrochemical Micromachining
,”
Science
,
289
(
5476
), pp.
98
101
.10.1126/science.289.5476.98
You do not currently have access to this content.