Edge cracking is commonly observed in cold rolling process. However, its failure mechanism is far from fully understanding due to the complex stresses and plastic flow conditions of steel strip under the rolling condition. In this paper, an extended Gurson–Tvergaard–Needleman (GTN) damage model coupled with Nahshon–Hutchinson shear damage mechanism was introduced to investigate the damage and fracture behavior of steel strip in cold rolling. The results show that extended GTN damage model is efficient in predicting the occurrence of edge crack in cold rolling, and the prediction is more accurate than that of the original GTN damage model. The edge cracking behavior under various cold rolling process parameters is investigated. It comes to the conclusion that edge crack extension increases with the increase of the reduction ratio, tension and the decrease of the roller radius and friction coefficient. The influence of shear damage becomes more significant in rolling condition with a larger reduction ratio, smaller roller radius, lower friction force, and tension.

References

References
1.
Ghosh
,
S.
,
Li
,
M.
, and
Gardiner
,
D.
,
2004
, “
A Computational and Experimental Study of Cold Rolling of Aluminum Alloys With Edge Cracking
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
74
82
.10.1115/1.1645877
2.
Zhang
,
D. F.
,
Dai
,
Q. W.
,
Fang
,
L.
, and
Xu
,
X. X.
,
2011
, “
Prediction of Edge Cracks and Plastic–Damage Analysis of Mg Alloy Sheet in Rolling
,”
Trans. Nonferrous Met. Soc. China
,
21
(
5
), pp.
1112
1117
.10.1016/S1003-6326(11)60829-7
3.
Cockcroft
,
M.
, and
Latham
,
D.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Metals
,
96
(
1
), pp.
33
39
.
4.
Rajak
,
S. A.
, and
Reddy
,
N. V.
,
2005
, “
Prediction of Internal Defects in Plane Strain Rolling
,”
J. Mater. Process. Technol.
,
159
(
3
), pp.
409
417
.10.1016/j.jmatprotec.2004.06.001
5.
Mashayekhi
,
M.
,
Torabian
,
N.
, and
Poursina
,
M.
,
2011
, “
Continuum Damage Mechanics Analysis of Strip Tearing in a Tandem Cold Rolling Process
,”
Simul. Modell. Pract. Theory
,
19
(
2
), pp.
612
625
.10.1016/j.simpat.2010.10.003
6.
Lemaitre
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin, Germany
.
7.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth, Part I. Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
8.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
9.
Yan
,
Y.
,
Sun
,
Q.
,
Chen
,
J.
, and
Pan
,
H.
,
2013
, “
The Initiation and Propagation of Edge Cracks of Silicon Steel During Tandem Cold Rolling Process Based on the Gurson–Tvergaard–Needleman Damage Model
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
598
605
.10.1016/j.jmatprotec.2012.11.006
10.
Yan
,
Y.
,
Sun
,
Q.
,
Chen
,
J.
, and
Pan
,
H.
,
2013
, “
Effect of Processing Parameters on Edge Cracking in Cold Rolling
,”
Mater. Manuf. Process.
10.1080/10426914.2013.811746
11.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear—Micromechanics
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5481
5498
.10.1016/j.ijsolstr.2007.01.010
12.
Riedel
,
H.
,
Andrieux
,
F.
,
Walde
,
T.
, and
Karhausen
,
K. F.
,
2007
, “
The Formation of Edge Cracks During Rolling of Metal Sheet
,”
Steel Res. Int.
,
78
(
10–11
), pp.
818
824
.
13.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A
,
27
(
1
), pp.
1
17
.10.1016/j.euromechsol.2007.08.002
14.
Soyarslan
,
C.
,
Fassmann
,
D. P. F.
,
Plugge
,
B.
,
Isik
,
K.
,
Kwiatkowski
,
L.
,
Schaper
,
M.
,
Brosius
,
A.
, and
Tekkaya
,
A. E.
,
2011
, “
An Experimental and Numerical Assessment of Sheet-Bulk Formability of Mild Steel DC04
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061008
.10.1115/1.4004852
15.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.10.1007/BF00036191
16.
Tvergaard
,
V.
,
1982
, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
(
4
), pp.
237
252
.10.1007/BF00015686
17.
Abendroth
,
M.
, and
Kuna
,
M.
,
2003
, “
Determination of Deformation and Failure Properties of Ductile Materials by Means of the Small Punch Test and Neural Networks
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
633
644
.10.1016/j.commatsci.2003.08.031
18.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
(
3
), pp.
249
256
.10.1115/1.3224807
19.
Nahshon
,
K.
, and
Xue
,
Z.
,
2009
, “
A Modified Gurson Model and Its Application to Punch-Out Experiments
,”
Eng. Fract. Mech.
,
76
(
8
), pp.
997
1009
.10.1016/j.engfracmech.2009.01.003
20.
Sun
,
Q.
,
Yan
,
Y. X.
,
Chen
,
J. J.
,
Li
,
X. X.
, and
Pan
,
H. L.
,
2013
, “
Implementation of a Shear Modified GTN Damage Model and Its Application in Cold Rolling
,”
Adv. Mater. Res.
,
815
, pp.
758
764
.10.4028/www.scientific.net/AMR.815.758
21.
Hu
,
X. H.
,
Choi
,
K. S.
,
Sun
,
X.
, and
Golovashchenko
,
S. F.
,
2014
, “
Edge Fracture Prediction of Traditional and Advanced Trimming Processes for AA6111-T4 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
). p.
021016
.10.1115/1.4026273
You do not currently have access to this content.