Localized electrodeposition (LED) was explored as an additive manufacturing technique with high control over process parameters and output geometry. The effect of variation of process parameters and changing boundary conditions during the deposition process on the output geometry was observed through simulation and experimentation. Trends were found between specific process parameters and output geometries in the simulations; trends varied between linear and nonlinear, and certain process parameters such as voltage and interelectrode gap were found to have a greater influence on the output than others. The simulations were able to predict the output width of deposition of experiments in an error of 8–30%. The information gained from this research allows for greater understanding of LED output, so that it can potentially be applied as an additive manufacturing technique of complex three-dimensional (3D) parts on the microscale.

References

References
1.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.10.1007/s00170-012-4605-2
2.
Chabok
,
H.
,
Zhou
,
C.
,
Chen
,
Y.
,
Eskandarinazhad
,
A.
,
Zhou
,
Q.
, and
Shung
,
K.
,
2012
, “
Ultrasound Transducer Array Fabrication Based on Additive Manufacturing of Piezocomposites
,”
ASME
Paper No. ISFA2012-7119.10.1115/ISFA2012-7119
3.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
4.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
5.
Shetty
,
D.
, and
Ly
,
D.
,
2012
, “
Additive Manufacturing: Exploration of Porosity and Form Features Using Layer by Layer Deposition
,”
ASME
Paper No. IMECE2012-88277.10.1115/IMECE2012-88277
6.
Nair
,
R.
,
Jiang
,
W.
, and
Molian
,
P.
,
2004
, “
Nanoparticle Additive Manufacturing of Ni-H13 Steel Injection Molds
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
637
639
.10.1115/1.1765143
7.
Bard
,
A. J.
,
Huesser
,
O. E.
, and
Craston
,
D. H.
,
1990
, “
High Resolution Deposition and Etching in Polymer Films
,”
U.S. Patent No.
4,968,390.
8.
Kadekar
,
V.
,
Fang
,
W.
, and
Liou
,
F.
,
2005
, “
Deposition Technologies for Micromanufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
787
795
.10.1115/1.1811118
9.
Said
,
R. A.
,
2004
, “
Localized Electro-Deposition (LED): The March Toward Process Development
,”
Nanotechnology
,
15
(
10
), pp.
S649
–S659.10.1088/0957-4484/15/10/025
10.
Chen
,
K. S.
, and
Evans
,
G. H.
,
2004
, “
Two-Dimensional Modeling of Nickel Electrodeposition in LIGA Microfabrication
,”
Microsyst. Technol.
,
10
(
6–7
), pp.
444
450
.10.1007/s00542-004-0373-8
11.
Rashidi
,
A. M.
, and
Amadeh
,
A.
,
2008
, “
The Effect of Current Density on the Grain Size of Electrodeposited Nanocrystalline Nickel Coatings
,”
Surf. Coat. Technol.
,
202
(
16
), pp.
3772
3776
.10.1016/j.surfcoat.2008.01.018
12.
Madden
,
J. D.
, and
Hunter
, I
. W.
,
1996
, “
Three-Dimensional Microfabrication by Localized Electrochemical Deposition
,”
Microelectromech. Syst. J.
,
5
(
1
), pp.
24
32
.10.1109/84.485212
13.
El
Giar
,
E. M.
,
Said
,
R. A.
,
Bridges
,
G. E.
, and
Thomson
,
D. J.
,
2000
, “
Localized Electrochemical Deposition of Copper Microstructures
,”
J. Electrochem. Soc.
,
147
(
2
), pp.
586
591
.10.1149/1.1393237
14.
Jansson
,
A.
,
Thornell
,
G.
, and
Johansson
,
S.
,
2000
, “
High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel
,”
J. Electrochem. Soc.
,
147
(
5
), pp.
1810
1817
.10.1149/1.1393439
15.
Yeo
,
S. H.
, and
Choo
,
J. H.
,
2001
, “
Effects of Rotor Electrode in the Fabrication of High Aspect Ratio Microstructures by Localized Electrochemical Deposition
,”
J. Micromech. Microeng.
,
11
(
5
), pp.
435
442
.10.1088/0960-1317/11/5/301
16.
Said
,
R. A.
,
2003
, “
Shape Formation of Microstructures Fabricated by Localized Electrochemical Deposition
,”
J. Electrochem. Soc.
,
150
(
8
), pp.
C549
C557
.10.1149/1.1591753
17.
Lin
,
J. C.
,
Chang
,
T. K.
,
Yang
,
J. H.
,
Jeng
,
J. H.
,
Lee
,
D. L.
, and
Jiang
,
S. B.
,
2009
, “
Fabrication of a Micrometer Ni-Cu Alloy Column Coupled With a Cu Micro-Column for Thermal Measurement
,”
J. Micromech. Microeng.
,
19
(
1
), p. 015030.10.1088/0960-1317/19/1/015030
18.
Chen
,
K. S.
, and
Evans
,
G. H.
, “
Multi-Dimensional Multi-Species Modeling of Transient Electrodeposition in LIGA Microfabrication
,” Sandia National Laboratories, Technical Report No. SAND2004-2864.
19.
Mishra
,
A.
,
Thakur
,
A.
, and
Srinivas
,
V.
,
2009
, “
Effect of Deposition Parameters on Microstructure of Electrodeposited Nickel Thin Films
,”
J. Mater. Sci.
,
44
(
13
), pp.
3520
3527
.10.1007/s10853-009-3475-y
20.
Natter
,
H.
,
Schmelzer
,
M.
, and
Hempelmann
,
R.
,
1998
, “
Nanocrystalline Nickel and Nickel-Copper Alloys: Synthesis, Characterization, and Thermal Stability
,”
J. Mater. Res.
,
13
(
5
), pp.
1186
1197
.10.1557/JMR.1998.0169
21.
Milchev
,
A.
,
2002
, “Electrocrystallization: Fundamentals of Nucleation and Growth,”
Springer
,
New York
.
22.
Jain
,
V. K.
, and
Pandey
,
P. C.
,
1981
, “
Tooling Design for ECM—A Finite Element Approach
,”
ASME J. Manuf. Sci. Eng.
,
103
(
2
), pp.
183
191
.10.1115/1.3184473
23.
Lin
,
J.
,
Chang
,
T.
,
Yang
,
J.
,
Chen
,
Y.
, and
Chuang
,
C.
,
2010
, “
Localized Electrochemical Deposition of Micrometer Copper Columns by Pulse Plating
,”
Electrochim. Acta
,
55
(
6
), pp.
1888
1894
.10.1016/j.electacta.2009.11.002
You do not currently have access to this content.