In additive manufacturing (AM) processes, the layer-by-layer fabrication leads to a staircase error resulting in dimensional inaccuracies in the part surface. Using thinner slices reduces the staircase error and improves part accuracy but also increases the number of layers and the build time for manufacturing the part. Another approach called adaptive slicing uses slices of varying thicknesses based on the part geometry to build the part. A new algorithm to compute adaptive slice thicknesses using octree data structure is presented in this study. This method, termed as modified boundary octree data structure (MBODS) algorithm, is used to convert the stereolithography (STL) file of an object to an octree data structure based on the part's geometry, the machine parameters, and a user defined tolerance value. A subsequent algorithm computes the variable slice thicknesses using the MBODS representation of the part and virtually manufactures the part using these calculated slice thicknesses. Points sampled from the virtually manufactured part are inspected to evaluate the volumetric, profile, and cylindricity part errors. The MBODS based slicing algorithm is validated by comparing it with the uniform slicing approach using various slice thicknesses for different parts. The developed MBODS algorithm is observed to be more effective in improving the part quality while using lesser number of slices.

References

References
1.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.10.1115/1.4026446
2.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
3.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
4.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.10.1016/j.jmsy.2011.07.010
5.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
J. Manuf. Syst.
,
31
(
4
), pp.
429
437
.10.1016/j.jmsy.2012.07.004
6.
Panhalkar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2013
, “
Adaptive Layering in Additive Manufacturing using a k-d Tree Approach
,”
Proceedings of the 41st NAMRC 2013
, Madison, WI, June 10–14.
7.
Koc
,
B.
,
2004
, “
Adaptive Layer Approximation of Free-Form Models Using Marching Point Surface Error Calculation for Rapid Prototyping
,”
Rapid Prototyping J.
,
10
(
5
), pp.
270
280
.10.1108/13552540410562304
8.
Ma
,
W. Y.
,
But
,
W. C.
, and
He
,
P. R.
,
2004
, “
NURBS-Based Adaptive Slicing for Efficient Rapid Prototyping
,”
Comput.-Aided Des.
,
36
(
13
), pp.
1309
1325
.10.1016/j.cad.2004.02.001
9.
Zhou
,
M. Y.
,
Xi
,
J. T.
, and
Yan
,
J. Q.
,
2004
, “
Adaptive Direct Slicing With Non-Uniform Cusp Heights for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
23
(
1–2
), pp.
20
27
.10.1007/s00170-002-1523-8
10.
Cormier
,
D.
,
Unnanon
,
K.
, and
Sanii
,
E.
,
2000
, “
Specifying Non-Uniform Cusp Heights as a Potential Aid for Adaptive Slicing
,”
Rapid Prototyping J.
,
6
(
3
), pp.
204
211
.10.1108/13552540010337074
11.
Zhao
,
Z. W.
, and
Laperriere
,
L.
,
2000
, “
Adaptive Direct Slicing of the Solid Model for Rapid Prototyping
,”
Int. J. Prod. Res.
,
38
(
1
), pp.
69
83
.10.1080/002075400189581
12.
Hope
,
R. L.
,
Roth
,
R. N.
, and
Jacobs
,
P. A.
,
1997
, “
Adaptive Slicing With Sloping Layer Surfaces
,”
Rapid Prototyping J.
,
3
(
3
), pp.
89
98
.10.1108/13552549710185662
13.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Bohn
,
J. H.
,
1996
, “
Adaptive Slicing Using Stepwise Uniform Refinement
,”
Rapid Prototyping J.
,
2
(
4
), pp.
20
26
.10.1108/13552549610153370
14.
Anand
,
S.
, and
Knott
,
K.
,
1991
, “
An Algorithm for Converting the Boundary Representation of a CAD Model to Its Octree Representation
,”
Comput. Ind. Eng.
,
21
(
1–4
), pp.
343
347
.10.1016/0360-8352(91)90114-L
15.
Allada
,
V.
, and
Anand
,
S.
,
1992
, “
Manufacturing Applications of Octrees
,”
Comput. Ind. Eng.
,
23
(
1–4
), pp.
37
40
.10.1016/0360-8352(92)90058-R
16.
Brunet
,
P.
, and
Navazo
,
I.
,
1990
, “
Solid Representation and Operation Using Extended Octrees
,”
ACM Trans. Graphics
,
9
(
2
), pp.
170
197
.10.1145/78956.78959
17.
Navazo
,
I.
,
1989
, “
Extended Octtree Representation of General Solids With Plane Faces—Model Structure and Algorithms
,”
Comput. Graphics
,
13
(
1
), pp.
5
16
.10.1016/0097-8493(89)90031-9
18.
Ayala
,
D.
,
1988
, “
Boolean Operations between Solids and Surfaces by Octrees—Models and Algorithm
,”
Comput.-Aided Des.
,
20
(
8
), pp.
452
465
.10.1016/0010-4485(88)90003-6
19.
Samet
,
H.
,
1988
, “
An Overview of Quadtrees, Octrees, and Related Hierarchical Data Structures
,”
Theor. Found. Comput. Graphics CAD NATO ASI Ser.
,
40
, pp.
51
68
.10.1007/978-3-642-83539-1
20.
Brunet
,
P.
, and
Ayala
,
D.
,
1987
, “
Extended Octtree Representation of Free Form Surfaces
,”
Comput. Aided Geom. Des.
,
4
(
1–2
), pp.
141
154
.10.1016/0167-8396(87)90031-8
21.
Ayala
,
D.
,
Brunet
,
P.
,
Juan
,
R.
, and
Navazo
,
I.
,
1985
, “
Object Representation by Means of Nonminimal Division Quadtrees and Octrees
,”
ACM Trans. Graphics
,
4
(
1
), pp.
41
59
.10.1145/3973.3975
22.
Gargantini
,
I.
,
1982
, “
Linear Octtrees for Fast Processing of 3-Dimensional Objects
,”
Comput. Graphics Image Process.
,
20
(
4
), pp.
365
374
.10.1016/0146-664X(82)90058-2
23.
Meagher
,
D.
,
1982
, “
Geometric Modeling Using Octree Encoding
,”
Comput. Graphics Image Process.
,
19
(
2
), pp.
129
147
.10.1016/0146-664X(82)90104-6
24.
Jackins
,
C.
, and
Tanimoto
,
S.
,
1980
, “
Oct-Trees and Their Use in Representing 3-Dimensional Objects
,”
Comput. Graphics Image Process.
,
14
(
3
), pp.
249
270
.10.1016/0146-664X(80)90055-6
25.
Samet
,
H.
,
1985
, “
A Top-Down Quadtree Traversal Algorithm
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
7
(
1
), pp.
94
98
.10.1109/TPAMI.1985.4767622
26.
Samet
,
H.
, and
Shaffer
,
C. A.
,
1985
, “
A Model for the Analysis of Neighbor Finding in Pointer-Based Quadtrees
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
7
(
6
), pp.
717
720
.10.1109/TPAMI.1985.4767729
27.
Samet
,
H.
, and
Tamminen
,
M.
,
1985
, “
Computing Geometric-Properties of Images Represented by Linear Quadtrees
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
7
(
2
), pp.
229
240
.10.1109/TPAMI.1985.4767646
28.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
,
2000
, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
,
6
(
1
), pp.
18
35
.10.1108/13552540010309859
29.
Dolenc
,
A.
, and
Makela
,
I.
,
1994
, “
Slicing Procedures for Layered Manufacturing Techniques
,”
Comput.-Aided Des.
,
26
(
2
), pp.
119
126
.10.1016/0010-4485(94)90032-9
30.
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Wall Thickness Control in Layered Manufacturing for Surfaces With Closed Slices
,”
Comput. Geom. Theory Appl.
,
10
(
4
), pp.
223
238
.10.1016/S0925-7721(98)00009-1
31.
Roth
,
S. D.
,
1982
, “
Ray Casting for Modeling Solids
,”
Comput. Graphics Image Process.
,
18
(
2
), pp.
109
144
.10.1016/0146-664X(82)90169-1
32.
Masood
,
S. H.
, and
Rattanawong
,
W.
,
2002
, “
A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
19
(
3
), pp.
209
216
.
33.
Rattanawong
,
W.
,
Masood
,
S. H.
, and
Iovenitti
,
P.
,
2001
, “
A Volumetric Approach to Part-Build Orientations in Rapid Prototyping
,”
J. Mater. Process. Technol.
,
119
(
1–3
), pp.
348
353
.10.1016/S0924-0136(01)00924-4
34.
Navangul
,
G.
,
2011
, “
Stereolithography (STL) File Modification by Vertex Translation Algorithm (VTA) for Precision Layered Manufacturing
,” M.S. thesis, University of Cincinnati, Cincinnati, OH.
35.
Navangul
,
G.
,
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
A Vertex Translation Algorithm for Adaptive Modification of STL File in Layered Manufacturing
,”
ASME
Paper No. MSEC2011-50283.10.1115/MSEC2011-50283
36.
The American Society of Mechanical Engineers
,
1995
,
American National Standards Institute: Dimensioning and Tolerancing for Engineering Drawings, ANSI Standard Y14.5M
,
ASME
,
New York
.
You do not currently have access to this content.