Most often contoured surfaces inclined at several inclinations are generated using ball-end milling of aerospace and automobile components. It is understood that the chip morphology and the corresponding cutting mechanisms change with a change in the tool-workpiece interactions on inclined surfaces. Analytical predictive models to accurately evaluate the undeformed and deformed geometries of chip in ball-end milling are not available. Therefore, this work presents development of analytical models to predict the cutting tool-workpiece interaction as the workpiece inclination changes, in terms of undeformed and deformed chip cross sections. The models further evaluate instantaneous shear angle along any cross section of the tool-work interaction on a ball-end cutter in a milling operation. The models illustrate evaluation of a chip segment and mechanism of its formation in ball-end milling on an inclined work surface. It is observed that the chip dimensions, except deformed chip thickness, increase with an increase in the workpiece inclination angle. Also, a higher workpiece inclination results into an easy flow of the deformed chip over the cutting tool flank, which leads to a higher shear angle during the cut. The predictive chip geometry models corroborate 90% to the experimental results obtained at various workpiece inclinations.

References

References
1.
Bouzakis
,
K.
,
2003
, “
Determination of the Chip Geometry, Cutting Force and Roughness in Free Form Surfaces Finishing Milling, With Ball End Tools
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
499
514
.10.1016/S0890-6955(02)00265-1
2.
Toh
,
C. K.
,
2004
, “
Surface Topography Analysis in High-Speed Finish Milling Inclined Hardened Steel
,”
Precis. Eng.
,
28
(
4
), pp.
386
398
.10.1016/j.precisioneng.2004.01.001
3.
Oliveira
,
A. J.
, and
Diniz
,
A. E.
,
2009
, “
Tool Life and Tool Wear in the Semi-Finish Milling of Inclined Surfaces
,”
J. Mater. Process. Technol.
,
209
(
14
), pp.
448
455
.10.1016/j.jmatprotec.2009.04.022
4.
Lamikiz
,
A.
,
Lopez de Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Salgado
,
M. A.
,
2004
, “
Cutting Force Estimation in Sculptured Surface Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1511
1526
.10.1016/j.ijmachtools.2004.05.004
5.
Ikua
,
B. W.
,
Tanaka
,
H.
,
Obata
,
F.
,
Sakamoto
,
S.
,
Kishi
,
T.
, and
Ishii
,
T.
,
2002
, “
Prediction of Cutting Forces and Machining Error in Ball End Milling of Curved Surfaces—II Experimental Verification
,”
Precis. Eng.
,
26
(
1
), pp.
69
82
.10.1016/S0141-6359(01)00101-5
6.
Fontaine
,
M.
,
Moufki
,
A.
,
Devillez
,
A.
, and
Dudzinski
,
D.
,
2007
, “
Modeling of Cutting Forces in Ball-End Milling With Tool-Surface Inclination Part I: Predictive Force Model and Experimental Validation
,”
J. Mater. Process. Technol.
,
189
(
1–3
), pp.
73
84
.10.1016/j.jmatprotec.2007.01.006
7.
Lazoglu
,
I.
, and
Liang
,
S.
,
2000
, “
Modeling of Ball-End Milling Forces With Cutter Axis Inclination
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
3
11
.10.1115/1.538885
8.
Oda
,
Y.
,
Mori
,
M.
,
Ogawa
,
K.
,
Nishida
,
S.
,
Fujishima
,
M.
, and
Kawamura
,
T.
,
2012
, “
Study of Optimal Cutting Condition for Energy Efficiency Improvement in Ball End Milling With Tool-Workpiece Inclination
,”
CIRP Ann.
,
61
(
1
), pp.
119
122
.10.1016/j.cirp.2012.03.034
9.
Sambhav
,
K.
,
Tandon
,
P.
, and
Dhande
,
S.
,
2014
, “
Force Modeling for Generic Profile of Drills
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041019
.10.1115/1.4027595
10.
Li
,
Z.-L.
, and
Zhu
,
L.-M.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.10.1115/1.4027415
11.
Mashreki
,
M.
,
Kovecses
,
J.
,
Attia
,
H.
, and
Younsi
,
N.
,
2008
, “
Dynamics Modeling and Analysis of Thin-Walled Aerospace Structures for Fixture Design in Multiaxis Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031011
.10.1115/1.2927444
12.
Kolarits
,
F. M.
, and
DeVries
,
W. R.
,
1991
, “
A Mechanistic Dynamic Model of End Milling for Process Controller Simulation
,”
ASME J. Manuf. Sci. Eng.
,
113
(
2
), p.
031011
.10.1115/1.2899675
13.
Chen
,
X.
,
Zhao
,
J.
,
Liu.
,
S.
,
Dong
,
Y.
, and
Wang
,
F.
,
2013
, “
Investigation on the Chip Formation Concerning Tool Inclination Angles in Ball End Milling of H13 Die Steel
,”
Proc. Inst. Mech. Eng.
, Part B,
228
, pp.
337
355
.10.1177/0954405413500663
14.
Huang
,
T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Decoupled Chip Thickness Calculation Model for Cutting Force Prediction in Five-Axis Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1203
1217
.10.1007/s00170-013-5099-2
15.
Sonawane
,
H. A.
, and
Joshi
,
S. S.
,
2010
, “
Analytical Modeling of Chip Geometry and Cutting Forces in Helical Ball End Milling of Superalloy Inconel 718
,”
CIRP J. Manuf. Sci. Technol.
,
3
(
3
), pp.
204
217
.10.1016/j.cirpj.2010.11.003
16.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
1059
1072
.10.1016/0890-6955(95)00081-X
17.
Nowotnik
, A.
,
Pedrak
, P.
,
Sieniawski
, J.
, and
Goral
, M.
,
2012
, “
Mechanical Properties of Hot Deformed Inconel 718 and X750
,”
J. Achiev. Mater. Manuf. Eng.
,
50
(2), pp.
74
80
.
18.
Harshad Sonawane,
2013
, “
Modeling of Tool-Work Interaction Mechanics in Ball-End Milling of Superalloy
,” Ph.D. thesis, Indian Institute of Technology, Bombay, Mumbai, India.
You do not currently have access to this content.