The objective of this research is to examine the micromachining responses of a hierarchical three-phase composite made up of microscale glass fibers that are held together by an epoxy matrix, laden with nanoscale graphene platelets (GPL). To this end, micromilling experiments are performed on both a hierarchical graphene composite as well as on a baseline two-phase glass fiber composite without the graphene additive. The composite microstructure is characterized using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. Tool wear, chip morphology, cutting force, surface roughness, and fiber–matrix debonding are employed as machinability measures. In general, the tool wear, cutting forces, surface roughness, and extent of debonding are all seen to be lower for the hierarchical graphene composite. These improvements are attributed to the fact that GPL improve the thermal conductivity of the matrix, provide lubrication at the tool–chip interface, and also improve the interface strength between the glass fibers and the matrix. Thus, the addition of graphene to a conventional two-phase glass fiber epoxy composite is seen to improve not only its mechanical properties but also its machinability.

References

References
1.
Gary
,
A. C.
, and
Mai
,
Y.-W.
,
1988
, “
Failure Mechanisms in Toughened Epoxy Resins—A Review
,”
Compos. Sci. Technol.
,
31
(
3
), pp.
179
223
.10.1016/0266-3538(88)90009-7
2.
Cohen
,
R. E.
, and
Argon
,
A. S.
,
2003
, “
Toughenability of Polymers
,”
Polymer
,
44
(
19
), pp.
6013
6032
.10.1016/S0032-3861(03)00546-9
3.
Yavari
,
F.
,
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2010
, “
Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites
,”
ACS Appl. Mater. Interfaces
,
2
(
10
), pp.
2738
2743
.10.1021/am100728r
4.
Yavari
,
F.
,
2012
, “
Graphene Nano-Devices and Nano-Composites for Structural, Thermal and Sensing Applications
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
5.
Komanduri
,
R.
,
1997
, “
Machining of Fiber-Reinforced Composites
,”
Mach. Sci. Tech.
,
1
(
1
), pp.
113
152
.10.1080/10940349708945641
6.
Sakuma
,
K.
, and
Seto
,
M.
,
1983
, “
Tool Wear in Cutting Glass Fiber Reinforced Plastics—The Relation Between Fiber Orientation and Tool Wear
,”
Bull. JSME
,
26
(
218
), pp.
1420
1427
.10.1299/jsme1958.26.1420
7.
Che
,
D.
,
Saxena
,
I.
,
Han
,
P.
,
Guo
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
034001
.10.1115/1.4026526
8.
Park
,
K.-H.
,
Beal
,
A.
,
Kim
,
D.
,
Kwon
,
P.
, and
Lantrip
,
J.
,
2013
, “
A Comparative Study of Carbide Tools in Drilling of CFRP and CFRP-Ti Stacks
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025008
9.
Davim
,
J. P.
,
Silva
,
L. R.
,
Festas
,
A.
, and
Abrão
,
A. M.
,
2009
, “
Machinability Study on Precision Turning of PA66 Polyamide with and without Glass Fiber Reinforcing
,”
Mater. Design
,
30
(
2
), pp.
228
234
.10.1016/j.matdes.2008.05.003
10.
Calzada
,
K. A.
,
Samuel
,
J.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Srivastava, A. K.
, and
Iverson, J.
,
2010
, “
Failure Mechanisms Encountered in Micro-Milling of Aligned Carbon Fiber Reinforced Polymers
,”
Trans. NAMRI/SME
,
38
, pp.
221
228
.
11.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2011
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Processes
,
14
(
2
), pp.
141
149
.10.1016/j.jmapro.2011.09.005
12.
Samuel
,
J.
,
Dikshit
,
A.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2009
, “
Effect of Carbon Nanotube (CNT) Loading on the Thermomechanical Properties and the Machinability of CNT-Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031008
.10.1115/1.3123337
13.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031110
.10.1115/1.2917564
14.
Arora
,
I.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2013
, “
Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041007
.10.1115/1.4024814
15.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.10.1115/1.4024941
16.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.10.1002/smll.200901480
17.
Bortz
,
D. R.
,
Heras
,
E. G.
, and
Martin-Gullon
,
I.
,
2012
, “
Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites
,”
Macromolecules
,
45
(
1
), pp.
238
245
.10.1021/ma201563k
18.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2007
, “
Graphite Nanoplatelet–Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
.10.1021/jp071761s
19.
Song
,
S. H.
,
Park
,
K. H.
,
Kim
,
B. H.
,
Choi
,
Y. W.
,
Jun
,
G. H.
,
Lee
,
D. L.
,
Kong
,
B.
,
Paik
,
K.
, and
Jeon
,
S.
,
2013
, “
Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non-Oxidized Graphene Flakes With Non-Covalent Functionalization
,”
Adv. Mater.
,
25
(
5
), pp.
732
737
.10.1002/adma.201202736
20.
Samuel
,
J.
,
Rafiee
,
J.
,
Dhiman
,
P.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
.10.1021/jp110885n
21.
Bhatnagar
,
N.
,
Ramakrishnan
,
N.
,
Naik
,
N. K.
, and
Komanduri
,
R.
,
1995
, “
On the Machining of Fiber Reinforced Plastic Composite Laminates
,”
Int. J. Mach. Tools Manuf.
,
35
(
5
), pp.
701
716
.10.1016/0890-6955(95)93039-9
22.
Varatharajan
,
R.
,
Malhotra
,
S. K.
,
Vijayaraghavan
,
L.
, and
Krishnamurthy
,
R.
,
2006
, “
Mechanical and Machining Characteristics of GF/PP and GF/Polyester Composites
,”
Mater. Sci. Eng. B
,
132
(
1
), pp.
134
137
.10.1016/j.mseb.2006.02.010
23.
Zhu
,
J.
,
Imam
,
A.
,
Crane
,
R.
,
Lozana
,
K.
,
Khabashesku
,
V. N.
, and
Barrera
,
E. V.
,
2007
, “
Processing a Glass Fiber Reinforced Vinyl Ester Composite With Nanotube Enhancement of Interlaminar Shear Strength
,”
Compos. Sci. Technol.
,
67
(
7
), pp.
1509
1517
.10.1016/j.compscitech.2006.07.018
24.
Puw
,
H. Y.
, and
Hocheng
,
H.
,
1999
, “
Milling of Polymer Composites
,”
Machining of Ceramics and Composites
, S. Jahanmir, M. Ramulu, and P. Koshy, eds., CRC Press, Boca Roton, FL. pp.
267
294
.
25.
Zhang
,
X.
,
Fan
,
X.
,
Yan
,
C.
,
Li
,
H.
,
Zhu
,
Y.
,
Li
,
X.
, and
Yu
,
L.
,
2012
, “
Interfacial Microstructure and Properties of Carbon Fiber Composites Modified With Graphene Oxide
,”
ACS Appl. Mater. Interfaces
,
4
(
3
), pp.
1543
1552
.10.1021/am201757v
26.
Lin
,
J.
,
Wang
,
L.
, and
Chen
,
G.
,
2011
, “
Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive
,”
Tribol. Lett.
,
41
(
1
), pp.
209
215
.10.1007/s11249-010-9702-5
You do not currently have access to this content.