Recent studies show that interparticle interaction can affect particle trajectories and particle deposition causing fouling in the microfilters used for metal working fluids (MWFs). Interparticle interaction depends on various factors: particle geometry and surface properties, membrane pore geometry and surface properties, MWF's properties and system operating conditions, etc. A mathematical model with a Langevin equation for particle trajectory and a hard-sphere model for particle deposition has been used to study the effect of particle's size, particle's surface zeta potential, interparticle distance, and shape of membrane pore wall surface on particle trajectory and its deposition on membrane pore wall. The study reveals the microlevel force phenomena behind bigger particles having a lesser tendency to be deposited on membrane pore walls than smaller particles. Deposition of particles on pore walls with asperities such as previously deposited particles is also examined and it is found that such cases can reduce repulsive electrostatic forces and lead to a higher probability of particle capture.

References

References
1.
Belfort
,
G.
,
Davis
,
R. H.
, and
Zydney
,
A. L.
,
1994
, “
The Behavior of Suspensions and Macromolecular Solutions in Cross-Flow Microfiltration
,”
J. Membr. Sci.
,
96
(
1–2
), pp.
1
58
.10.1016/0376-7388(94)00119-7
2.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Rajagopalan
,
N.
,
2008
, “
Partial Pore Blocking in Microfiltration Recycling of a Semisynthetic Metalworking Fluid
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041014
.10.1115/1.2953234
3.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2008
, “
Dynamic Simulations of Alumina Membrane Fouling From Recycling of Semisynthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
). p.
061015.
10.1115/1.2976149
4.
Ham
,
S.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Wentz
,
J.
,
2010
, “
The Impact of Surface Forces on Particle Flow and Membrane Fouling in the Microfiltration of Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011006
.10.1115/1.4000714
5.
Yu
,
B. Y.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2012
, “
Three-Dimensional Simulation of Cross-Flow Microfilter Fouling in Tortuous Pore Profiles With Semisynthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061002
.10.1115/1.4007618
6.
Choksuchart
,
P.
,
Heran
,
M.
, and
Grasmick
,
A.
,
2002
, “
Ultrafiltration Enhanced by Coagulation in an Immersed Membrane System
,”
Desalination
,
145
(
1–3
), pp.
265
272
.10.1016/S0011-9164(02)00421-6
7.
Kim
,
M. M.
, and
Zydney
,
A. L.
,
2005
, “
Particle–Particle Interactions During Normal Flow Filtration: Model Simulations
,”
Chem. Eng. Sci.
,
60
(
15
), pp.
4073
4082
.10.1016/j.ces.2005.01.029
8.
Kim
,
M. M.
, and
Zydney
,
A. L.
,
2004
, “
Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration
,”
J. Colloid Interface Sci.
,
269
(
2
), pp.
425
431
.10.1016/j.jcis.2003.08.004
9.
Sader
,
J. E.
,
Carnie
,
S. L.
, and
Chan
,
D. Y. C.
,
1995
, “
Accurate Analytic Formulas for the Double-Layer Interaction Between Spheres
,”
J. Colloid Interface Sci.
,
171
(
1
), pp.
46
54
.10.1006/jcis.1995.1149
10.
Kirby
,
B.
,
2010
,
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University
,
New York
.
11.
Vrijenhoek
,
E. M.
,
Hong
,
S.
, and
Elimelech
,
M.
,
2001
, “
Influence of Membrane Surface Properties on Initial Rate of Colloidal Fouling of Reverse Osmosis and Nanofiltration Membranes
,”
J. Membr. Sci.
,
188
(
1
), pp.
115
128
.10.1016/S0376-7388(01)00376-3
12.
Hoek
,
E. M. V.
,
Bhattacharjee
,
S.
, and
Elimelech
,
M.
,
2003
, “
Effect of Membrane Surface Roughness on Colloid–Membrane DLVO Interactions
,”
Langmuir
,
19
(
11
), pp.
4836
4847
.10.1021/la027083c
13.
Kosinski
,
P.
, and
Hoffmann
,
A. C.
,
2009
, “
Extension of the Hard-Sphere Particle–Wall Collision Model to Account for Particle Deposition
,”
Phys. Rev. E
,
79
(
6
), p.
061302
.10.1103/PhysRevE.79.061302
14.
Coffey
,
W.
,
Kalmykov
,
Y. P.
, and
Waldron
,
J. T.
,
2004
,
The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry, and Electrical Engineering
,
World Scientific
,
River Edge, NJ
.
15.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.10.1080/02786829208959550
16.
Wu
,
M. B.
,
Kuznetsov
,
A. V.
, and
Jasper
,
W. J.
,
2010
, “
Modeling of Particle Trajectories in an Electrostatically Charged Channel
,”
Phys. Fluids
,
22
(
4
), p.
043301
.10.1063/1.3369004
17.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic Press
,
Burlington, MA
.
18.
Chen
,
M. W.
, and
McLaughlin
,
J. B.
,
1995
, “
A New Correlation for the Aerosol Deposition Rate in Vertical Ducts
,”
J. Colloid Interface Sci.
,
169
(
2
), pp.
437
455
.10.1006/jcis.1995.1054
19.
Crowe
,
C. T.
,
2012
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
20.
Deen
,
N. G.
,
Annaland
,
M. V.
,
Van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2007
, “
Review of Discrete Particle Modeling of Fluidized Beds
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
28
44
.10.1016/j.ces.2006.08.014
21.
Yopps
,
J. A.
, and
Fuerstenau
,
D. W.
,
1964
, “
The Zero Point of Charge of Alpha-Alumina
,”
J. Colloid Sci.
,
19
(
1
), pp.
61
71
.10.1016/0095-8522(64)90007-8
22.
Jia
,
D.
,
Hamilton
,
J.
,
Zaman
,
L. M.
, and
Goonewardene
,
A.
,
2007
, “
The Time, Size, Viscosity, and Temperature Dependence of the Brownian Motion of Polystyrene Microspheres
,”
Am. J. Phys.
,
75
(
2
), pp.
111
115
.10.1119/1.2386163
You do not currently have access to this content.