Additive manufacturing (AM) has become a serious and potential game-changing method of manufacturing over the years since the first commercial technology for “Rapid Prototyping” in 1988. Even though we are advanced, the current accomplishments are still far from the level which can be expected in the future. Innovative approaches toward design are required to capture the full potential of this technology. This paper describes the advantages and possibilities of AM technologies, and how they can be used in various sectors (e.g., engineering, automotive, aerospace, medical, and consumer products, etc.) as alternative methods for manufacturing energy efficient parts with fewer raw materials. To take advantage of the capabilities of these technologies, new and enhanced design methods and procedures are required. This paper addresses strategic implications of widespread adoption of AM. It also reports how engineers need to change their thinking pattern to be able to use the full potential of the AM technologies. Engineers should be aware of the capabilities of the AM technologies and the available material selections to make the right decisions at the beginning of a design process. Also reported herein, in addition to building very complex shapes with various material mixtures, are the capabilities of fabricating lattice and hollow-core structures. Reduction of a product's weight is a great option for saving energy and cost, particularly for the automotive and aerospace sectors. However, it is still important to ensure the part has the necessary strength. The objective of the current research is to analyze and prove how certain shapes of cell structures influence the strength and flexibility of parts. Conclusion address the importance of understanding the strategic implications on AM for government officials, educators, researchers, and industrial leaders.

References

References
1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
,
Grote
,
K.-H.
,
Blessing
,
L.
, and
Wallace
,
K.
,
2007
,
Engineering Design—A Systematic Approach
, 3rd ed.,
Springer
,
London, UK
.
2.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers Publ.
,
Dearborn, MI
.
3.
Mieritz
,
B.
,
1993
, “
Rapid Prototyping as a Management Decision Tool
,”
Proceedings of the 2nd European Conference on Rapid Prototyping and Manufacturing
,
P. M.
Dickens
, ed.,
University of Nottingham
,
Nottingham, UK
, July 15–16, pp.
1
15
.
4.
Aubin
,
R. F.
,
1994
, “
A World Wide Assessment of Rapid Prototyping Technologies
,” United Technologies Research Center Report, East Hartford, CT, Report No. 94-13.
5.
Bjorke
,
O.
,
1995
,
Layer Manufacturing—A Challenge of the Future
,
Tapir Publisher
,
Trondheim, Norway
.
6.
Conley
,
J.
, and
Marcus
,
H.
,
1997
, “
Rapid Prototyping and Solid Free Form Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
811
816
.10.1115/1.2836828
7.
Hopkinson
,
N.
,
Hague
,
R.
, and
Dickens
,
P.
,
2005
,
Rapid Manufacturing: An Industrial Revolution for the Digital Age
,
Wiley
,
Chichester, UK
.10.1002/0470033991
8.
Petrovic
,
V.
,
Haro Gonzalez
,
J. V.
, and
Jorda Ferrando
,
O.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.10.1080/00207540903479786
9.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
J. Manuf. Syst.
,
31
(
4
), pp.
429
437
.10.1016/j.jmsy.2012.07.004
10.
Huang
,
S. H.
,
Liu
,
P.
, and
Mokasdar
,
A.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.10.1007/s00170-012-4558-5
11.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
12.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
13.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.10.1007/s11665-014-0958-z
14.
Zhai
,
Y.
,
Lados
,
D. A.
, and
Lagoy
,
J. L.
,
2014
, “
Additive Manufacturing: Making Imagination the Major Limitation
,”
JOM
,
66
(
5
), pp.
808
816
.10.1007/s11837-014-0886-2
15.
Hrabe
,
N.
, and
Quinn
,
T.
,
2013
, “
Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance From Build Plate and Part Size
,”
Mater. Sci. Eng. A
,
573
, pp.
264
270
.10.1016/j.msea.2013.02.064
16.
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Additive Fabrication Technologies Applied to Medicine and Health Care: A Review
,”
Int. J. Adv. Manuf. Technol.
,
40
(
1–2
), pp.
116
127
.10.1007/s00170-007-1308-1
17.
Elahinia
,
M. H.
,
Hashemi
,
M.
, and
Tabesh
,
M.
,
2012
, “
Manufacturing and Processing of NiTi Implants: A Review
,”
Prog. Mater. Sci.
,
57
(
5
), pp.
911
946
.10.1016/j.pmatsci.2011.11.001
18.
Kondor
,
S.
,
Grant
,
G.
,
Liacouras
,
P.
,
Schmid
,
J. R.
,
Parsons
,
M.
,
Rastogi
,
V. K.
,
Smith
,
L. S.
,
Macy
,
B.
,
Sabart
,
B.
, and
Macedonia
,
C.
,
2013
, “
On Demand Additive Manufacturing of a Basic Surgical Kit
,”
ASME J. Med. Devices
,
7
(
3
), p.
030916
.10.1115/1.4024490
19.
Marga
,
F.
,
Jakab
,
K.
, and
Khatiwala
,
C.
,
2012
, “
Toward Engineering Functional Organ Modules by Additive Manufacturing
,”
Biofabrication
,
4
(
2
), p.
022001
.10.1088/1758-5082/4/2/022001
20.
Melchels
,
F. P. W.
,
Domingos
,
M. A. N.
, and
Klein
,
T. J.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.10.1016/j.progpolymsci.2011.11.007
21.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Roadmap for Additive Manufacturing—Identifying the Future of Freeform Processing
,
The University of Texas at Austin
,
Austin, TX
.
22.
Wohlers
,
T.
,
2011
,
Wohlers Report 2011
,
Wohler Associates
,
Fort Collins, CO
.
23.
Manufacturing Engineering Media—SME, http://www.sme.org/MEMagazine/Article.aspx?id=80916
24.
RedEye,
2011
, “
FDM for the Final Frontier: RedEye 3D prints NASA's Robotic Stunt Double for a Mission on the International Space Station
,” Accessed Apr. 22, 2014, http://www.redeyeondemand.com/3d-printing-case-studies/fdm-aerospace-prototyping/
25.
Netfabb GmbH, “
Company Webpage Netfabb GmbH: Description Netfabb Software for 3D Printing
,” Accessed Mar. 3, 2014, http://www.netfabb.com/structure.php
26.
Within Technologies Ltd., “
Company Webpage Within Technologies Ltd.: Description Within Software
,” Accessed Mar. 3, 2014, http://withinlab.com/case-studies/index7.php
27.
Materialise, “
Company Webpage Materialise: Description of Lightweight Structures Software Module
,” Accessed July 15, 2014, http://www.materialise.com/cases/lightweight-structures-support-scherf-design-to-reach-new-heights
28.
Simpleware Ltd, “
Company Webpage Simpleware Ltd.: Description of Simpleware ScanIP Software Module
,” Accessed Aug. 27, 2014, http://connect.physicsworld.com/Journals//2014/06/03/Simpleware%20for%203D%20Printing%20% 281%29.pdf
29.
Manfredi
,
D.
,
Calignano
,
F.
, and
Ambrosio
,
E. P.
,
2013
, “
Direct Metal Laser Sintering: An Additive Manufacturing Technology Ready to Produce Lightweight Structural Parts for Robotic Applications
,”
Metall. Ital.
,
2013
(
10
), pp.
15
24
.
30.
Kenzari
,
S.
,
Bonina
,
D.
, and
Dubois
,
J. M.
,
2014
, “
Complex Metallic Alloys as New Materials for Additive Manufacturing
,”
Sci. Technol. Adv. Mater.
,
15
(
2
), p.
024802
.10.1088/1468-6996/15/2/024802
31.
Kontio
,
R.
,
2014
, “
Update on Mandibular Reconstruction: Computer-Aided Design, Imaging, Stem Cells and Future Applications
,”
Curr. Opin. Otolaryngol. Head Neck Surg.
,
22
(
4
), pp.
307
315
.10.1097/MOO.0000000000000065
32.
Wang
,
D.
,
Yang
,
Y.
, and
Liu
,
R.
,
2013
, “
Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1734
1742
.10.1016/j.jmatprotec.2013.05.001
34.
Cohen
,
D.
,
Sargeant
,
M.
, and
Somers
,
K.
,
2014
, “
3-D Printing Takes Shape
,” McKinsey Quarterly, Jan. 2014, Accessed Feb. 25, 2014, http://www.mckinsey.com/insights/manufacturing/3-d_printing_takes_shape?cid=other-eml-nsl-mip- mck-oth-1402
35.
NADA Data 2011, National Automobile Dealers Association, McLean, VA, Accessed Jan. 9, 2014, http://www.NADA.org
36.
GE Capital Fall 2013, “
Industry Research Monitor: Additive Manufacturing
,” Accessed Apr. 23, 2014, http://www.americas.gecapital.com/GECA_Document/Additive_Manufacturing_Fall_2013.pdf
37.
Khajavi
,
S. H.
,
Partanen
,
J.
, and
Holmstrom
,
J.
,
2014
, “
Additive Manufacturing in the Spare Parts Supply Chain
,”
Comput. Ind.
,
65
(
1
), pp.
50
63
.10.1016/j.compind.2013.07.008
38.
Rosen
,
D
.,
2014
, “
Design for Additive Manufacturing: Past, Present, and Future Directions
,”
ASME J. Mech. Des.
,
136
(
9
), p.
090301
.10.1115/1.4028073
39.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.10.1115/1.4005231
40.
Beyer
,
C.
, and
Kochan
,
R.
,
2013
, “
Innovation Potential of Additive Manufacturing
,”
Pahl/Beitz Engineering Design (German)
, 8th ed.,
J.
Feldhusen
, and
K.-H.
Grote
, eds.,
Springer, Berlin
,
Germany
, pp.
48
97
.
41.
Chhabra
,
M.
, and
Singh
,
R.
,
2011
, “
Rapid Casting Solutions: A Review
,”
Rapid Prototyping J.
,
17
(
5
), pp.
328
350
.10.1108/13552541111156469
42.
Huang
,
Y.
, and
Leu
,
M. C.
,
2014
,
Frontiers of Additive Manufacturing Research and Education—Report of NSF Additive Manufacturing Workshop
, Accessed Apr. 24, 2014, http://nsfam.mae.ufl.edu/2013NSFAMWorkshopReport.pdf
43.
Brown
,
C.
,
Lubell
,
J.
, and
Lipman
,
R.
,
2013
, “
Additive Manufacturing Technical Workshop Summary Report
,” NIST, Technical Note No. 1823.
44.
Aremu
,
A.
,
Ashcroft
,
I.
, and
Wildman
,
R.
,
2013
, “
The Effects of Bidirectional Evolutionary Structural Optimization Parameters on an Industrial Designed Component for Additive Manufacture
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
6
), pp.
794
807
.10.1177/0954405412463857
You do not currently have access to this content.