In this paper, we advocate for a more harmonized approach to model development for additive manufacturing (AM) processes, through classification and metamodeling that will support AM process model composability, reusability, and integration. We review several types of AM process models and use the direct metal powder bed fusion AM process to provide illustrative examples of the proposed classification and metamodel approach. We describe how a coordinated approach can be used to extend modeling capabilities by promoting model composability. As part of future work, a framework is envisioned to realize a more coherent strategy for model development and deployment.

References

1.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,
The University of Texas
,
Austin, TX
.
2.
Canessa
,
E.
,
Fonda
,
C.
, and
Zennaro
,
M.
,
2013
, “
Low-Cost 3D Printing: For Science, Education & Sustainable Development
,” ICTP—The Abdus Salam International Centre for Theoretical Physics.
3.
Friedman
,
T. L.
,
2013
,
When Complexity is Free
,
The New York Times
,
New York
.
4.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jorda Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramon Blasco Puchades
,
J.
, and
Portoles Grinan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.10.1080/00207540903479786
5.
Kobryn
,
P.
,
Ontko
,
N.
,
Perkins
,
L.
, and
Tiley
,
J.
,
2006
,
Additive Manufacturing of Aerospace Alloys for Aircraft Structures
,
Materials and Manufacturing Directorate, Air Force Research Lab
,
Wright-Patterson AFB, OH
.
6.
Hopkinson
,
N.
,
Hague
,
R.
, and
Dickens
,
P.
,
2006
,
Rapid Manufacturing: An Industrial Revolution for the Digital Age
,
Wiley
,
Hoboken, NJ
.10.1002/0470033991
7.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
.10.1115/1.4025737
8.
2013
, “
Accelerated Certification of Additively Manufactured Metals
,” https://manufacturing.llnl.gov/additive-manufacturing/accelerated-certification
9.
2013
,
Measurement Science Roadmap for Metal-Based Additive Manufacturing
, Prepared by Energetics Incorporated, Columbia, MD for the National Institute of Standards and Technology, U.S. Department of Commerce.
10.
Gockel
,
J.
, and
Beuth
,
J.
,
2013
, “
Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via Process Maps
,”
Solid Freeform Fabrication Proceedings
, Austin, TX, Aug. 12–14.
11.
Pal
,
D.
,
Patil
,
N.
,
Nikoukar
,
M.
,
Zeng
,
K.
,
Kutty
,
K. H.
, and
Stucker
,
B. E.
,
2013
, “
An Integrated Approach to Cyber-Enabled Additive Manufacturing Using Physics Based, Coupled Multi-Scale Process Modeling
,”
Proceedings of SFF Symposium
, Austin, TX, Aug. 12–14, pp.
1
18
.
12.
Beuth
,
J.
,
Fox
,
J.
,
Gockel
,
J.
,
Montgomery
,
C.
,
Yang
,
R.
,
Qiao
,
H.
,
Soylemez
,
E.
,
Reeseewatt
,
P.
,
Anvari
,
A.
, and
Narra
,
S.
,
2013
, “
Process Mapping for Qualification Across Multiple Direct Metal Additive Manufacturing Processes
,”
Proceedings of SFF Symposium
., Austin, TX, Aug. 12–14.
13.
Rombouts
,
M.
,
Kruth
,
J.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
Ann. CIRP
,
55
(
1
), pp.
187
192
.10.1016/S0007-8506(07)60395-3
14.
Kruth
,
J.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
Ann. CIRP
,
56
(
2
), pp.
730
759
.10.1016/j.cirp.2007.10.004
15.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing
,
Springer
,
New York
.
16.
Wolhers
,
T.
,
2013
, Wohlers Report
2013
.
17.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
18.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
19.
Attar
,
E.
,
2011
, “
Simulation of Selective Electron Beam Melting Processes
,” Ph.D. thesis, University of Erlangen-Nurnberg, Erlangen and Nuremberg, Germany.
20.
Yadoitsev
,
I.
,
2009
,
Selective Laser Melting—Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders
,
Lambert Academic Publishing
, Saarbrücken,
Germany
.
21.
Labudovi
,
M.
, and
Kovacevic
,
D.
,
2003
, “
A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping
,”
J. Mater. Sci.
,
38
(
1
), pp.
35
49
.10.1023/A:1021153513925
22.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Proceedings of Solid Freeform Fabrication Symposium
Austin, TX
.
23.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A.
,
Bentefour
,
E.
, and
Glorieux
,
C.
,
2005
, “
Light Extinction in Metallic Powder Beds: Correlation With Powder Structure
,”
J. Appl. Phys.
,
98
(
1
), p.
013533
.10.1063/1.1948509
24.
Eagar
,
T.
, and
Tsai
,
N.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346-s
355-s
.
25.
Tolochko
,
N.
,
Laoui
,
T.
,
Khlopkov
,
Y.
,
Mozzharov
,
S.
,
Titov
,
V.
, and
Ignatiev
,
M.
,
2000
, “
Absorptance of Powder Materials Suitable for Laser Sintering
,”
Rapid Prototyping J.
,
6
(
3
), pp.
155
160
.10.1108/13552540010337029
26.
Guasarov
,
A.
,
Laoui
,
T.
,
Froyen
,
L.
, and
Titov
,
V.
,
2003
, “
Contact Thermal Conductivity of a Powder Bed in Selective Laser Sintering
,”
Int. J. Heat Mass Transfer
,
46
(
6
), pp.
1103
1109
.10.1016/S0017-9310(02)00370-8
27.
Shiomi
,
M.
,
Yoshidome
,
A.
,
Abe
,
F.
, and
Osakada
,
K.
,
1999
, “
Finite Element Analysis of Melting and Solidifying Processes in Laser Rapid Prototyping of Metallic Powders
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
237
252
.10.1016/S0890-6955(98)00036-4
28.
Chen
,
W.
,
Yang
,
Y.
, and
Lee
,
H.
,
2007
, “
Estimating the Absorptivity in Laser Processing by Inverse Methodology
,”
Appl. Math. Comput.
,
190
(
1
), pp.
712
721
.10.1016/j.amc.2007.01.077
29.
Guasarov
,
A.
, and
Kruth
,
J.
,
2005
, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3423
3434
.10.1016/j.ijheatmasstransfer.2005.01.044
30.
Gusarov
,
A.
, and
Smurov
,
I.
,
2010
, “
Modeling the Interaction of Laser Radiation With Powder Bed at Selective Laser Melting
,”
Phys. Proc.
,
5
(
Part B
), pp.
381
394
.10.1016/j.phpro.2010.08.065
31.
Michaleris
,
P.
,
Dantzig
,
J.
, and
Tortorelli
,
D.
,
1999
, “
Minimization of Welding Residual Stress and Distortion in Large Structures
,”
Weld. J.-New York
,
78
(
11
), pp.
361-s
366-s
.
32.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.10.1108/13552549510078113
33.
Chowdhury
,
I.
, and
Xu
,
X.
,
2003
, “
Heat Transfer in Femtosecond Laser Processing of Metal
,”
J. Numer. Heat Transfer A
,
44
(
3
), pp.
219
232
.10.1080/716100504
34.
Cline
,
H.
, and
Anthony
,
T.
,
1997
, “
Heat Treating and Melting Material With a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
,
48
(
9
), pp.
3895
3900
.10.1063/1.324261
35.
Yang
,
L.
,
Peng
,
X.
, and
Wang
,
B.
,
2001
, “
Numerical Modeling and Experimental Investigation on the Characteristics of Molten Pool During Laser Processing
,”
Heat Mass Transfer
,
44
(
23
), pp.
4465
4473
.10.1016/S0017-9310(01)00086-2
36.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
37.
Xiao
,
B.
, and
Zhang
,
Y.
,
2007
, “
Marangoni and Buoyancy Effects on Direct Metal Laser Sintering With a Moving Laser Beam
,”
J. Numer. Heat Transfer A
,
51
(
8
), pp.
715
733
.10.1080/10407780600968593
38.
Aggarangsi
,
P.
,
Beuth
,
J. L.
, and
Gill
,
D. D.
,
2004
, “
Transient Changes in Melt Pool Size in Laser Additive Manufacturing Processes
,”
Solid Freeform Fabrication Proceedings, University of Texas, Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 2–4, pp.
163
174
.
39.
Zhang
,
Y.
, and
Faghri
,
A.
,
1998
, “
Melting and Resolidification of a Subcooled Mixed Powder Bed With Moving Gaussian Heat Source
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
883
891
.10.1115/1.2825907
40.
Williams
,
J.
, and
Deckard
,
C.
,
1998
, “
Advances in Modeling the Effects of Selected Parameters on the SLS Process
,”
Rapid Prototyping J.
,
4
(
2
), pp.
90
100
.10.1108/13552549810210257
41.
Chen
,
T.
, and
Zhang
,
Y.
,
2003
, “
Analysis of Melting in a Mixed Metal Powder Bed With Finite Thickness Subjected to Constant Heat Flux Heating
,”
ASME
Paper No. HT2003-47289.10.1115/HT2003-47289
42.
Pinkerton
,
A.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D: Appl. Phys.
,
37
(
14
), pp.
1885
1895
.10.1088/0022-3727/37/14/003
43.
Konrad
,
C.
,
Zhang
,
Y.
, and
Xiao
,
B.
,
2005
, “
Analysis of Melting and Resolidification in a Two-Component Metal Powder Bed Subjected to Temporal Gaussian Heat Flux
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3932
3944
.10.1016/j.ijheatmasstransfer.2005.04.010
44.
Zhou
,
W.
,
Loney
,
D.
,
Fedorov
,
A.
,
Degertekin
,
F.
, and
Rosen
,
D.
,
2013
, “
Lattice Boltzmann Simulations of Multiple Droplet Interactions During Impingement on the Substrate
,”
The 24th Annual International Solid Free Form Fabrication Symposium Austin, TX
, Aug. 12–14, pp.
606
630
.
45.
Chen
,
L.-Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.10.1146/annurev.matsci.32.112001.132041
46.
Bontha
,
S.
,
Klingbeil
,
N. W.
,
Kobryn
,
P. A.
, and
Fraser
,
H. L.
,
2006
, “
Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures
,”
J. Mater. Process. Technol.
,
178
(
1-3
), pp.
135
142
.10.1016/j.jmatprotec.2006.03.155
47.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
195
198
.10.1016/S0007-8506(07)60677-5
48.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.10.1108/13552540610707013
49.
Jouault
,
F.
, and
Bézivin
,
J.
,
2006
, “
KM3: A DSL for Metamodel Specification
,” Formal Methods for Open Object-Based Distributed Systems,
Springer
,
New York
, pp.
171
185
.10.1007/11768869_14
50.
Gardner
,
T.
,
Griffin
,
C.
,
Koehler
,
J.
, and
Hauser
,
R.
,
2003
, “
A Review of OMG MOF 2.0 Query/Views/Transformations Submissions and Recommendations Towards the Final Standard
,”
Proceedings of MetaModelling for MDA Workshop, Citeseer
, York, UK, Nov. 24–25, pp.
178
197
.
51.
2004
, “
OWL Web Ontology Language Overview
,” W3C Recommendation.
52.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
53.
Knupp
,
P.
, and
Salari
,
K.
,
2010
, Verification of Computer Codes in Computational Science and Engineering,
CRC Press
,
Boca Raton, FL
.10.1201/9781420035421
You do not currently have access to this content.