Selective laser melting (SLM) is a technique for the additive manufacturing (AM) of metals, plastics, and even ceramics. This paper explores using SLM for depositing glass structures. A CO2 laser is used to locally melt portions of a powder bed to study the effects of process parameters on stationary particle formation as well as continuous line quality. Numerical modeling is also applied to gain insight into the physical process. The experimental and numerical results indicate that the absorptivity of the glass powder is nearly constant with respect to the processing parameters. These results are used to deposit layered single-track wide walls to demonstrate the potential of using the SLM process for building transparent parts. Finally, the powder bed process is compared to a wire-fed approach. AM of glass is relevant for gradient index optics, systems with embedded optics, and the formation of hermetic seals.

References

References
1.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
.10.1016/j.cirp.2007.10.004
2.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. of Mater. Process. Tech.
,
149
(
1–3
), pp.
616
622
.10.1016/j.jmatprotec.2003.11.051
3.
Rombouts
,
M.
,
2006
,
Selective Laser Sintering/Melting of Iron-Based Powders
,
Katholieke Universiteit Leuven
,
Leuven, Belgium
.
4.
Badrossamay
,
M.
, and
Childs
,
T. H. C.
,
2007
, “
Further Studies in Selective Laser Melting of Stainless and Tool Steel Powders
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
779
784
.10.1016/j.ijmachtools.2006.09.013
5.
Childs
,
T.
,
Hauser
,
C.
, and
Badrossamay
,
M.
,
2005
, “
Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modeling
,”
Proc. Inst. Mech. Eng. B.
,
219
(
4
), pp.
339
357
.10.1243/095440505X8109
6.
Hao
,
L.
,
Dadbakhsh
,
S.
,
Seaman
,
O.
, and
Felstead
,
M.
,
2009
, “
Selective Laser Melting of a Stainless Steel and Hydroxyapatite Composite for Load-Bearing Implant Development
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5793
5801
.10.1016/j.jmatprotec.2009.06.012
7.
Xie
,
F.
,
He
,
X.
,
Cao
,
S.
, and
Qu
,
X.
,
2013
, “
Structural and Mechanical Characteristics of Porous 316L Stainless Steel Fabricated by Indirect Selective Laser Sintering
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
838
843
.10.1016/j.jmatprotec.2012.12.014
8.
Rombouts
,
M.
,
Kruth
,
J. P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
187
192
.10.1016/S0007-8506(07)60395-3
9.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, and
Smurov
,
I.
,
2010
, “
Single Track Formation in Selective Laser Melting of Metal Powders
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1624
1631
.10.1016/j.jmatprotec.2010.05.010
10.
Childs
,
T. H. C.
,
Hauser
,
C.
, and
Badrossamay
,
M.
,
2004
, “
Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser Melting
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
191
194
.10.1016/S0007-8506(07)60676-3
11.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
12.
Buchbinder
,
D.
,
Schleifenbaum
,
H.
,
Heidrich
,
S.
,
Meiners
,
W.
, and
Bültmann
,
J.
,
2011
, “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
, pp.
271
278
.10.1016/j.phpro.2011.03.035
13.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2012
, “
Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting
,”
Phys. Procedia
,
39
, pp.
439
446
.10.1016/j.phpro.2012.10.059
14.
Taltavull
,
C.
,
Torres
,
B.
,
López
,
A. J.
,
Rodrigo
,
P.
,
Otero
,
E.
, and
Rams
,
J.
,
2012
, “
Selective Laser Surface Melting of a Magnesium-Aluminium Alloy
,”
Mater. Lett.
,
85
, pp.
98
101
.10.1016/j.matlet.2012.07.004
15.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H. A.
, and
Maier
,
H. J.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
, pp.
300
307
.10.1016/j.ijfatigue.2012.11.011
16.
Vandenbroucke
,
B.
, and
Kruth
,
J.-P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,
13
(
4
), pp.
196
203
.10.1108/13552540710776142
17.
Warnke
,
P. H.
,
Douglas
,
T.
,
Wollny
,
P.
,
Sherry
,
E.
,
Steiner
,
M.
,
Galonska
,
S.
,
Becker
,
S. T.
,
Springer
,
I. N.
,
Wiltfang
,
J.
, and
Sivananthan
,
S.
,
2008
, “
Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering
,”
Tissue Eng. C.
,
15
(
2
), pp.
115
124
.10.1089/ten.tec.2008.0288
18.
Tang
,
Y.
,
Loh
,
H. T.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
,
Lu
,
L.
, and
Wang
,
X.
,
2003
, “
Direct Laser Sintering of a Copper-Based Alloy for Creating Three-Dimensional Metal Parts
,”
J. Mater. Process. Technol.
,
140
(
1
), pp.
368
372
.10.1016/S0924-0136(03)00766-0
19.
Shishkovsky
,
I.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Alumina–Zirconium Ceramics Synthesis by Selective Laser Sintering/Melting
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
966
970
.10.1016/j.apsusc.2007.09.001
20.
Yves-Christian
,
H.
,
Jan
,
W.
,
Wilhelm
,
M.
,
Konrad
,
W.
, and
Reinhart
,
P.
,
2010
, “
Net Shaped High Performance Oxide Ceramic Parts by Selective Laser Melting
,”
Phys. Procedia
,
5
, pp.
587
594
.10.1016/j.phpro.2010.08.086
21.
Lakshminarayan
,
U.
,
Ogrydiziak
,
S.
, and
Marcus
,
H. L.
,
1990
, “
Selective Laser Sintering of Ceramic Materials
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 6–8, pp.
16
26
.
22.
Vail
,
N. K.
, and
Barlow
,
J. W.
,
1991
, “
Effect of Polymer Coatings as Intermediate Binders on Sintering of Ceramic parts
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 12–24, pp.
195
204
.
23.
Lee
,
I.
,
Manthiram
,
A.
, and
Marcus
,
H. L.
,
1995
, “
Selective Laser Sintering of Alumina-Zinc Borosilicate Glass Composites using Monoclinic HB02 as a Binder
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 7–9, pp.
46
54
.
24.
Marchelli
,
G.
,
Storti
,
D.
,
Ganter
,
M.
, and
Prabhakar
,
M.
,
2010
, “
An Introduction to 3D Glass Printing
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 3–5, pp.
95
107
.
25.
Klocke
,
F.
,
McClung
,
A.
, and
Ader
,
C.
,
2004
, “
Direct Laser Sintering of Borosilicate Glass
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 3–5, pp.
214
219
.
26.
Quadrini
,
F.
, and
Santo
,
L.
,
2008
, “
Selective Laser Sintering of Resin-Coated Sands—Part I: The Laser-Material Interaction
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011004
.10.1115/1.3046132
27.
Kandis
,
M.
, and
Bergman
,
T.
,
2000
, “
A Simulation-Based Correlation of the Density and Thermal Conductivity of Objects Produced by Laser Sintering of Polymer Powders
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
439
444
.10.1115/1.1286558
28.
Mazzoli
,
A.
,
Moriconi
,
G.
, and
Pauri
,
M. G.
,
2007
, “
Characterization of an Aluminum-Filled Polyamide Powder for Applications in Selective Laser Sintering
,”
Mater. Des.
,
28
(
3
), pp.
993
1000
.10.1016/j.matdes.2005.11.021
29.
Niino
,
T.
, and
Yamada
,
H.
,
2009
, “
Fabrication of Transparent Parts by Laser Sintering Process
,”
J. Jpn. Soc. Precis. Eng.
,
75
(
12
), pp.
1454
1458
.10.2493/jjspe.75.1454
30.
Fateri
,
M.
, and
Khosravi
,
M.
,
2012
, “
On-site Additive Manufacturing by Selective Laser Melting of Composite Objects
,” Concepts and Approaches for Mars Exploration, Houston TX, June 12–14, p.
4368
.
31.
Klein
,
S.
,
Simske
,
S.
,
Parraman
,
C.
,
Walters
,
P.
,
Hunson
,
D.
, and
Hoskins
,
S.
,
2012
, “
3D Printing of Transparent Glass
,” Hewlett-Packerd Development Company, www.hpl.hp.com/techreports/2012/HPL-2012-198.pdf
32.
Abbassi
,
A.
, and
Khoshmanesh
,
K.
,
2008
, “
Numerical Simulation and Experimental Analysis of an Industrial Glass Melting Furnace
,”
Appl. Therm. Eng.
,
28
(
5
), pp.
450
459
.10.1016/j.applthermaleng.2007.05.011
33.
Wiederhorn
,
S. M.
,
1969
, “
Fracture Surface Energy of Glass
,”
J. Am. Ceram. Soc.
,
52
(
2
), pp.
99
105
.10.1111/j.1151-2916.1969.tb13350.x
34.
Rubin
,
M.
,
1985
, “
Optical Properties of Soda Lime Silica Glasses
,”
Sol. Energy Mater.
,
12
(
4
), pp.
275
288
.10.1016/0165-1633(85)90052-8
35.
Osakada
,
K.
, and
Shiomi
,
M.
,
2006
, “
Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder
,”
Int. J. Mach. Tools Manuf.
,
46
(
11
), pp.
1188
1193
.10.1016/j.ijmachtools.2006.01.024
36.
Childs
,
T.
, and
Tontowi
,
A.
,
2001
, “
Selective Laser Sintering of a Crystalline and a Glass-Filled Crystalline Polymer: Experiments and Simulations
,”
Proc. Inst. Mech. Eng. B.
,
215
(
11
), pp.
1481
1495
.10.1243/0954405011519330
37.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
38.
Zhou
,
J.
,
Tsai
,
H.-L.
, and
Wang
,
P.-C.
,
2006
, “
Transport Phenomena and Keyhole Dynamics During Pulsed Laser Welding
,”
ASME J. Heat Transfer
,
128
(
7
), p.
680
.10.1115/1.2194043
39.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
,
2008
, “
Three-Dimensional Modeling of the Plasma Arc in Arc Welding
,”
J. Appl. Phys.
,
104
(
10
), p.
103301
.10.1063/1.2998907
40.
Zhou
,
J.
, and
Tsai
,
H. L.
,
2008
, “
Modeling of Transport Phenomena in Hybrid Laser-Mig Keyhole Welding
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4353
4366
.10.1016/j.ijheatmasstransfer.2008.02.011
41.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
,
2012
, “
Modeling Three-Dimensional Plasma Arc in Gas Tungsten Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031001
.10.1115/1.4006091
42.
Chen
,
T.
, and
Zhang
,
Y.
,
2006
, “
Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), p.
299
.10.1115/1.2122947
43.
Zhang
,
Y.
,
Faghri
,
A.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
1999
, “
Three-Dimensional Sintering of Two-Component Metal Powders With Stationary and Moving Laser Beams
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
150
158
.10.1115/1.521445
44.
Marimuthu
,
S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023240
45.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.10.1115/1.4025746
46.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
.10.1115/1.4025737
47.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
,
London, UK
.10.1007/978-1-84996-062-5
You do not currently have access to this content.