Powder-bed beam-based metal additive manufacturing (AM) such as electron beam additive manufacturing (EBAM) has a potential to offer innovative solutions to many challenges and difficulties faced in the manufacturing industry. However, the complex process physics of EBAM has not been fully understood, nor has process metrology such as temperatures been thoroughly studied, hindering part quality consistency, efficient process development and process optimizations, etc., for effective EBAM usage. In this study, numerical and experimental approaches were combined to research the process temperatures and other thermal characteristics in EBAM using Ti–6Al–4V powder. The objective of this study was to develop a comprehensive thermal model, using a finite element (FE) method, to predict temperature distributions and history in the EBAM process. On the other hand, a near infrared (NIR) thermal imager, with a spectral range of 0.78 μm–1.08 μm, was employed to acquire build surface temperatures in EBAM, with subsequent data processing for temperature profile and melt pool size analysis. The major results are summarized as follows. The thermal conductivity of Ti–6Al–4V powder is porosity dependent and is one of critical factors for temperature predictions. The measured thermal conductivity of preheated powder (of 50% porosity) is 2.44 W/m K versus 10.17 W/m K for solid Ti–6Al–4V at 750 °C. For temperature measurements in EBAM by NIR thermography, a method was developed to compensate temperature profiles due to transmission loss and unknown emissivity of liquid Ti–6Al–4V. At a beam speed of about 680 mm/s, a beam current of about 7.0 mA and a diameter of 0.55 mm, the peak process temperature is on the order around 2700 °C, and the melt pools have dimensions of about 2.94 mm, 1.09 mm, and 0.12 mm, in length, width, and depth, respectively. In general, the simulations are in reasonable agreement with the experimental results with an average error of 32% for the melt pool sizes. From the simulations, the powder porosity is found critical to the thermal characteristics in EBAM. Increasing the powder porosity will elevate the peak process temperature and increase the melt pool size.

References

References
1.
CAD to Metal
,” Accessed June 21,
2013
, http://www.arcam.com/
2.
Biamino
,
S.
,
Penna
,
A.
,
Ackelid
,
U.
,
Sabbadini
,
S.
,
Tassa
,
O.
,
Fino
,
P.
,
Pavese
,
M.
,
Gennaro
,
P.
, and
Badini
,
C.
,
2011
, “
Electron Beam Melting of Ti–48Al–2Cr–2Nb Alloy: Microstructure and Mechanical Properties Investigation
,”
Intermetallics
,
19
(
6
), pp.
776
781
.10.1016/j.intermet.2010.11.017
3.
Gong
,
X.
,
Anderson
,
T.
, and
Chou
,
K.
,
2014
, “
Review on Powder-Based Electron Beam Additive Manufacturing Technology
,”
Manuf. Rev.
,
1
, pp.
1
12
.10.1051/mfreview/2013001
4.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
5.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
6.
Gaytan
,
S. M.
,
Murr
,
L. E.
,
Medina
,
F.
,
Martinez
,
E.
,
Lopez
,
M. I.
, and
Wicker
,
R. B.
,
2009
, “
Advanced Metal Powder Based Manufacturing of Complex Components by Electron Beam Melting
,”
Mater. Technol.
,
24
(
3
), pp.
180
190
.10.1179/106678509X12475882446133
7.
Oak Ridge—Animation of Additive Manufacturing with Electron Beam Melting
,” Accessed Apr. 4,
2014
, http://www.youtube.com/watch?v=BxxIVLnAbLw
8.
Heinl
,
P.
,
Rottmair
,
A.
,
Korner
,
C.
, and
Singer
,
R. F.
,
2007
, “
Cellular Titanium by Selective Electron Beam Melting
,”
Adv. Eng. Mater.
,
9
(
5
), pp.
360
364
.10.1002/adem.200700025
9.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
10.
Cormier
,
D.
,
Harrysson
,
O.
, and
West
,
H.
,
2004
, “
Characterization of H13 Steel Produced via Electron Beam Melting
,”
Rapid Prototyping J.
,
10
(
1
), pp.
35
41
.10.1108/13552540410512516
11.
Ramirez
,
D. A.
,
Murr
,
L. E.
,
Martinez
,
E.
,
Hernandez
,
D. H.
,
Martinez
,
J. L.
,
Machado
,
B. I.
,
Medina
,
F.
,
Frigola
,
P.
, and
Wicker
,
R. B.
,
2011
, “
Novel Precipitate-Microstructural Architecture Developed in the Fabrication of Solid Copper Components by Additive Manufacturing Using Electron Beam Melting
,”
Acta Mater.
,
59
(
10
), pp.
4088
4099
.10.1016/j.actamat.2011.03.033
12.
Murr
,
L.
,
Martinez
,
E.
,
Gaytan
,
S.
,
Ramirez
,
D.
,
Machado
,
B.
,
Shindo
,
P.
,
Martinez
,
J.
,
Medina
,
F.
,
Wooten
,
J.
, and
Ciscel
,
D.
,
2011
, “
Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3491
3508
.10.1007/s11661-011-0748-2
13.
Zäh
,
M. F.
, and
Lutzmann
,
S.
,
2010
, “
Modeling and Simulation of Electron Beam Melting
,”
Prod. Eng. Res. Develop.
,
4
(
1
), pp.
15
23
.10.1007/s11740-009-0197-6
14.
Liu
,
C.
,
Wu
,
B.
, and
Zhang
,
J.
,
2010
, “
Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined With Electron Beam Welding
,”
Metall. Mater. Trans. B
,
41
(
5
), pp.
1129
1138
.10.1007/s11663-010-9408-y
15.
Luo
,
Y.
,
Liu
,
J.
, and
Ye
,
H.
,
2010
, “
An Analytical Model and Tomographic Calculation of Vacuum Electron Beam Welding Heat Source
,”
Vacuum
,
84
(
6
), pp.
857
863
.10.1016/j.vacuum.2009.11.015
16.
Lacki
,
P.
, and
Adamus
,
K.
,
2011
, “
Numerical Simulation of the Electron Beam Welding Process
,”
Comput. Struct.
,
89
(
11–12
), pp.
977
985
.10.1016/j.compstruc.2011.01.016
17.
Rouquette
,
S.
,
Guo
,
J.
, and
Le Masson
,
P.
,
2007
, “
Estimation of the Parameters of a Gaussian Heat Source by the Levenberg–Marquardt Method: Application to the Electron Beam Welding
,”
Int. J. Therm. Sci.
,
46
(
2
), pp.
128
138
.10.1016/j.ijthermalsci.2006.04.015
18.
Hemmer
,
H.
, and
Grong
,
Ø.
,
1999
, “
Prediction of Penetration Depths During Electron Beam Welding
,”
Sci. Technol. Weld. Joining
,
4
(
4
), pp.
219
225
.10.1179/136217199101537815
19.
Wang
,
L.
,
Felicelli
,
S.
,
Gooroochurn
,
Y.
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
,
2008
, “
Optimization of the LENS Process for Steady Molten Pool Size
,”
Mater. Sci. Eng. A
,
474
(
1–2
), pp.
148
156
.10.1016/j.msea.2007.04.119
20.
Roberts
, I
. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
21.
Lankalapalli
,
K.
,
Tu
,
J. F.
, and
Gartner
,
M.
,
1996
, “
A Model for Estimating Penetration Depth of Laser Welding Processes
,”
J. Phys. D: Appl. Phys.
,
29
(
7
), pp.
1831
–1841.10.1088/0022-3727/29/7/018
22.
Tsirkas
,
S. A.
,
Papanikos
,
P.
, and
Kermanidis
,
T.
,
2003
, “
Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens
,”
J. Mater. Process. Technol.
,
134
(
1
), pp.
59
69
.10.1016/S0924-0136(02)00921-4
23.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.10.1063/1.2209807
24.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
,
108
(
4
), p.
044908
.10.1063/1.3474655
25.
Choi
,
J.
,
Han
,
L.
, and
Hua
,
Y.
,
2005
, “
Modeling and Experiments of Laser Cladding With Droplet Injection
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
978
986
.10.1115/1.2005273
26.
Taylor
,
G. A.
,
Hughes
,
M.
,
Strusevich
,
N.
, and
Pericleous
,
K.
,
2002
, “
Finite Volume Methods Applied to the Computational Modeling of Welding Phenomena
,”
Appl. Math. Modell.
,
26
(
2
), pp.
311
322
.10.1016/S0307-904X(01)00063-4
27.
De
,
A.
, and
DebRoy
,
T.
,
2007
, “
Improving Reliability of Heat and Fluid Flow Calculation During Conduction Mode Laser Spot Welding by Multivariable Optimisation
,”
Sci. Technol. Weld. Joining
,
11
(
2
), pp.
143
153
.10.1179/174329306X84346
28.
Soylemez
,
E.
,
Beuth
,
J. L.
, and
Taminger
,
K.
,
2010
, “
Controlling Melt Pool Dimensions Over A Wide Range of Material Deposition Rates in Electron Beam Additive Manufacturing
,”
21st Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
, Aug. 9–11, pp.
571
582
.
29.
Lin
,
T. H.
,
Watson
,
J. S.
, and
Fisher
,
P. W.
,
1985
, “
Thermal Conductivity of Iron-Titanium Powders
,”
J. Chem. Eng. Data
,
30
(
4
), pp.
369
372
.10.1021/je00042a001
30.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
, pp.
291
304
.10.1080/02726350490501682
31.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.10.1016/j.ijmachtools.2003.10.019
32.
Patil
,
R. B.
, and
Yadava
,
V.
,
2007
, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1069
1080
.10.1016/j.ijmachtools.2006.09.025
33.
Tolochko
,
N. K.
,
Arshinov
,
M. K.
,
Gusarov
,
A. V.
,
Titov
,
V. I.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Mechanisms of Selective Laser Sintering and Heat Transfer in Ti Powder
,”
Rapid Prototyping J.
,
9
, pp.
314
326
.10.1108/13552540310502211
34.
Mahale
,
T. R.
,
2009
, “
Electron Beam Melting of Advanced Materials and Structures
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
35.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.10.1115/1.4025746
36.
Price
,
S.
,
Cooper
,
K.
, and
Chou
,
Y. K.
,
2014
, “
Evaluations of Temperature Measurements in Powder-Based Electron Beam Additive Manufacturing by Near-Infrared Thermography
,”
Int. J. Rapid Manuf.
,
4
(
1
), pp.
1
13
.10.1504/IJRAPIDM.2014.062010
37.
Schwerdtfeger
,
J.
,
Singer
,
R. F.
, and
Körner
,
C.
,
2012
, “
In Situ Flaw Detection by IR-Imaging During Electron Beam Melting
,”
Rapid Prototyping J.
,
18
(
4
), pp.
259
263
.10.1108/13552541211231572
38.
Rodriguez
,
E.
,
Medina
,
F.
,
Espalin
,
D.
,
Terrazas
,
C.
,
Muse
,
D.
,
Henry
,
C.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting
,”
23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
, Aug. 6–8, pp.
945
961
.
39.
Dinwiddie
,
R. B.
,
Dehoff
,
R. R.
,
Lloyd
,
P. D.
,
Lowe
,
L. E.
, and
Ulrich
,
J. B.
,
2013
, “
Thermographic in-Situ Process Monitoring of the Electron-Beam Melting Technology Used in Additive Manufacturing
,”
Proc. SPIE
,
87050K
, pp. 87050K–87059K.
40.
Cline
,
H.
, and
Anthony
,
T.
,
1977
, “
Heat Treating and Melting Material With a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
,
48
(
9
), pp.
3895
3900
.10.1063/1.324261
41.
Yang
,
J.
,
Sun
,
S.
,
Brandt
,
M.
, and
Yan
,
W.
,
2010
, “
Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti–6Al–4V Alloy
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2215
2222
.10.1016/j.jmatprotec.2010.08.007
42.
Rai
,
R.
,
2008
, “
Modeling of Heat Transfer and Fluid Flow in Keyhole Mode Welding
,” Ph.D. thesis, The Pennsylvania State University, State College, PA.
43.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
, pp.
211
216
.
44.
Gong
,
H.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
The Effects of Processing Parameters on Defect Regularity in Ti–6Al–4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
24rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
, Aug. 12–14, pp.
424
439
.
45.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E. W.
,
1998
,
Materials Properties Handbook: Titanium Alloys
,
ASM International Materials Park
,
OH
, pp.
483
636
.
46.
Al-Bermani
,
S.
,
Blackmore
,
M.
,
Zhang
,
W.
, and
Todd
,
I.
,
2010
, “
The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti–6Al–4V
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3422
3434
.10.1007/s11661-010-0397-x
47.
Gong
,
H.
,
Rafi
,
K.
,
Karthik
,
N.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
Defect Morphology in Ti–6Al–4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
24rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
, Aug. 12–14, pp.
440
453
.
48.
Whitenton
,
E.
,
2010
,
High-Speed Dual-Spectrum Imaging for the Measurement of Metal Cutting Temperatures
,
National Institute of Standards and Technology
, NISTIR No. 7650, Gaithersburg, MD.
49.
González-Fernández
,
L.
,
Risueño
,
E.
,
Pérez-Sáez
,
R.
, and
Tello
,
M.
,
2012
, “
Infrared Normal Spectral Emissivity of Ti–6Al–4V Alloy in the 500–1150 K Temperature Range
,”
J. Alloys Compd.
,
541
, pp.
144
149
.10.1016/j.jallcom.2012.06.117
50.
Li
,
J. J.
,
2009
, “
Study of Liquid Metals by Electrostatic Levitation
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
You do not currently have access to this content.