Additive manufacturing (AM) is widely used in aerospace, automobile, and medical industries for building highly accurate parts using a layer by layer approach. The stereolithography (STL) file is the standard file format used in AM machines and approximates the three-dimensional (3D) model of parts using planar triangles. However, as the STL file is an approximation of the actual computer aided design (CAD) surface, the geometric errors in the final manufactured parts are pronounced, particularly in those parts with highly curved surfaces. If the part is built with the minimum uniform layer thickness allowed by the AM machine, the manufactured part will typically have the best quality, but this will also result in a considerable increase in build time. Therefore, as a compromise, the part can be built with variable layer thicknesses, i.e., using an adaptive layering technique, which will reduce the part build time while still reducing the part errors and satisfying the geometric tolerance callouts on the part. This paper describes a new approach of determining the variable slices using a 3D k-d tree method. The paper validates the proposed k-d tree based adaptive layering approach for three test parts and documents the results by comparing the volumetric, cylindricity, sphericity, and profile errors obtained from this approach with those obtained using a uniform slicing method. Since current AM machines are incapable of handling adaptive slicing approach directly, a “pseudo” grouped adaptive layering approach is also proposed here. This “clustered slicing” technique will enable the fabrication of a part in bands of varying slice thicknesses with each band having clusters of uniform slice thicknesses. The proposed k-d tree based adaptive slicing approach along with clustered slicing has been validated with simulations of the test parts of different shapes.

References

References
1.
Arni
,
R.
, and
Gupta
,
S. K.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
156
.10.1115/1.1326439
2.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.10.1016/j.jmsy.2011.07.010
3.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
J. Manuf. Syst.
,
31
(
4
), pp.
429
437
.10.1016/j.jmsy.2012.07.004
4.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.10.1115/1.4026446
5.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
6.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
7.
Jamieson
,
R.
, and
Hacker
,
H.
,
1995
, “
Direct Slicing of CAD Models for Rapid Prototyping
,”
Rapid Prototyping J.
,
1
(
2
), pp.
4
12
.10.1108/13552549510086826
8.
Zhou
,
M. Y.
,
Xi
,
J. T.
, and
Yan
,
J. Q.
,
2004
, “
Adaptive Direct Slicing With Non-Uniform Cusp Heights for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
23
(
1–2
), pp.
20
27
.10.1007/s00170-002-1523-8
9.
Dolenc
,
A.
, and
Makela
,
I.
,
1994
, “
Slicing Procedures for Layered Manufacturing Techniques
,”
Comput. Aided Des.
,
26
(
2
), pp.
119
126
.10.1016/0010-4485(94)90032-9
10.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Bohn
,
J. H.
,
1996
, “
Adaptive Slicing Using Stepwise Uniform Refinement
,”
Rapid Prototyping J.
,
2
(
4
), pp.
20
26
.10.1108/13552549610153370
11.
Cormier
,
D.
,
Unnanon
,
K.
, and
Sanni
,
E.
,
2000
, “
Specifying Non-Uniform Cusp Heights as a Potential for Adaptive Slicing
,”
Rapid Prototyping J.
,
6
(
3
), pp.
204
211
.10.1108/13552540010337074
12.
Panhalkar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2013
, “
Adaptive Layering in Additive Manufacturing Using a k-d Tree Approach
,”
Proceedings of the NAMRI SME
, Vol.
41
,
Madison, WI
, June 10–14.
13.
Kulkarni
,
P.
, and
Dutta
,
D.
,
1995
, “
Adaptive Slicing of Parameterizable Algebraic Surfaces for Layered Manufacturing
,”
Proc. ASME Des. Eng. Tech. Conf.
,
82
(
1
), pp.
211
217
.
14.
Kulkarni
,
P.
, and
Dutta
,
D.
,
1996
, “
An Accurate Slicing Procedure for Layered Manufacturing
,”
Comput. Aided Des.
,
28
(
9
), pp.
683
697
.10.1016/0010-4485(95)00083-6
15.
Luo
,
R. C.
, and
Ma
,
Y.
,
1995
, “
A Slicing Algorithm for Rapid Prototyping and Manufacturing
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
, May 21–27, pp.
2841
2846
.
16.
Hildebrand
,
K.
,
Bockel
,
B.
, and
Alexa
,
M.
,
2013
, “
Orthogonal Slicing for Additive Manufacturing
,”
Comput. Graphics
,
37
(
6
), pp.
669
675
.10.1016/j.cag.2013.05.011
17.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
(in press).10.1115/1.4028579
18.
Hope
,
R. L.
,
Jacobs
,
P. A.
, and
Roth
,
R. N.
,
1997
, “
Rapid Prototyping With Sloping Surfaces
,”
Rapid Prototyping J.
,
3
(
1
), pp.
12
19
.10.1108/13552549710169246
19.
Hope
,
R. L.
,
Roth
,
R. N.
, and
Jacobs
,
P. A.
,
1997
, “
Adaptive Slicing With Sloping Surfaces
,”
Rapid Prototyping J.
,
3
(
3
), pp.
89
98
.10.1108/13552549710185662
20.
Ma
,
W. Y.
,
But
,
W. C.
, and
He
,
P. R.
,
2004
, “
NURBS-Based Adaptive Slicing for Efficient Rapid Prototyping
,”
Comput. Aided Des.
,
36
(
13
), pp.
1309
1325
.10.1016/j.cad.2004.02.001
21.
Koc
,
B.
,
2004
, “
Adaptive Layer Approximation of Free-Form Models Using Marching Point Surface Error Calculation for Rapid Prototyping
,”
Rapid Prototyping J.
,
10
(
5
), pp.
270
280
.10.1108/13552540410562304
22.
Bentley
,
J. L.
,
1975
, “
Multidimensional Binary Search Trees Used for Associative Searching
,”
Commun. ACM
,
18
(
9
), pp.
509
517
.10.1145/361002.361007
23.
Friedman
,
J. H.
,
Bentley
,
J. L.
, and
Finkel
,
R. A.
,
1977
, “
An Algorithm for Finding Best Matches in Logarithmic Expected Time
,”
ACM Trans. Math. Software
,
3
(
3
), pp.
209
226
.10.1145/355744.355745
24.
Fukunaga
,
K.
, and
Narendra
,
P. M.
,
1975
, “
A Branch and Bound Algorithm for Computing k-Nearest Neighbors
,”
IEEE Trans. Comput.
,
24
(
7
), pp.
750
753
.10.1109/T-C.1975.224297
25.
Lawrence Associates Inc.
,
1994
, “
Virtual Manufacturing Technical Workshop
,” Dayton, OH.
26.
Marinov
,
V.
,
2001
, “
On Some Aspect of the Virtual Manufacturing Concept
,”
Proceedings of the Third International Conference on Metal Cutting and high Speed Machining
,
Metz, France
, June 27–29, pp.
37
42
.
27.
Zhao
,
J.
,
Xia
,
R.
,
Liu
,
W.
, and
Wang
,
H.
,
2009
, “
A Computing Method for Accurate Slice Contours Based on an STL Model
,”
Virtual Phys. Prototyping
,
4
(
1
), pp.
29
37
.10.1080/17452750902718219
28.
ASTM
,
2012
, “
Standard Specification for Additive Manufacturing File Format (AMF)
,” ASTM Standard No. F2915-12.1.
29.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Bohn
,
J. H.
,
1997
, “
Accurate Exterior, Fast Interior Layered Manufacturing
,”
Rapid Prototyping J.
,
3
(
2
), pp.
44
52
.10.1108/13552549710176662
30.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
,
2000
, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
,
6
(
1
), pp.
18
35
.10.1108/13552540010309859
31.
Silpa-Anan
,
C.
, and
Hartley
,
R.
,
2004
, “
Localization Using an Imagemap
,”
Australian Conference on Robotics and Automation
, Canberra, pp.
1
8
.
32.
Mikolajczyk
,
K.
, and
Matas
,
J.
,
2007
, “
Improving Descriptors for Fast Matching by Optimal Linear Projection
,”
IEEE
11th International Conference on Computer Vision,
Rio de Janeiro, Brazil
, Oct. 14–21, pp.
1
8
.10.1109/ICCV.2007.4408871
33.
Havran
,
V.
,
2000
, “
Heuristic Ray Shooting Algorithms
,” Ph.D. thesis, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic, http://dcgi.felk.cvut.cz/home/havran/DISSVH/dissvh.pdf
34.
Purcell
,
T. J.
,
Buck
,
I.
,
Mark
,
W. R.
, and
Hanrahan
,
P.
,
2002
, “
Ray Tracing on Programmable Graphics Hardware
,”
ACM Trans. Graphics
,
21
(
3
), pp.
701
712
.10.1145/566654.566640
35.
Ernst
,
M.
,
Vogelgsang
,
C.
, and
Greiner
,
G.
,
2004
, “
Stack Implementation on Programmable Graphics Hardware
,”
Proceedings of Vision Modeling and Visualization
,
Stanford, CA
, Nov. 16–18, pp.
255
262
.
36.
Foley
,
T.
, and
Sugerman
,
J.
,
2005
, “
Kd-Tree Acceleration Structures for a GPU Raytraces
,”
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
, Los Angeles, CA, July 30–31, pp.
15
22
.
37.
Horn
,
D. R.
,
Sugerman
,
J.
,
Houston
,
M.
, and
Hanharan
,
P.
,
2007
, “
Interactive k-d Tree GPU Raytracing
,”
Proceedings of Symposium on Interactive Ray Tracing
, New York, Apr. 30–May 2, pp. 167–174.
38.
Popov
,
S.
,
Gunther
,
J.
,
Seidel
,
H. -P.
, and
Slusallek
,
P.
,
2007
, “
Stackless kd-Tree Traversal for High Performance GPU Ray Tracing
,”
Eurographics ‘07
,
26
(
3
), pp.
415
424
.
39.
Vemulapalli
,
P.
, “
Kdtree Implementation in Matlab
,” http://www.mathworks.com/matlabcentral/fileexchange/26649
40.
Masood
,
S. H.
,
Rattanawong
,
W.
, and
Iovenitti
,
P.
,
2000
, “
Part Build Orientations Based on Volumetric Error in Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
16
(
3
), pp.
162
168
.10.1007/s001700050022
41.
American Society of Mechanical Engineers
, 1994,
Mathematical Definition of Dimensioning and Tolerancing Principles
,
ASME Press
,
NY
.
42.
Ramaswami
,
H.
,
2010
, “
An Integrated Framework for Virtual Machining and Inspection of Turned Parts
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH, http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282574694
43.
International Organization for Standardization, ISO 1101:
,
2004
, Geometric Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-out,” ISO, Geneva, Swizerland.
44.
Soman
,
K.
,
Ramaswami
,
H.
, and
Anand
,
S.
,
2009
, “
Selective Zone Search Method for Evaluation of Minimum Zone Sphericity
,”
ASME
Paper No. MSEC2009-84366.10.1115/MSEC2009-84366
45.
Shunmugam
,
M. S.
,
1987
New Approach for Evaluating Form Errors of Engineering Surfaces
,”
Comput. Aided Des.
,
19
(
7
), pp.
368
374
.10.1016/0010-4485(87)90037-6
46.
Murthy
,
T. S. R.
, and
Abdin
,
S. Z.
,
1980
, “
Minimum Zone Evaluation of Surfaces
,”
Int. J. Mach. Tool Des. Res.
,
20
(
2
), pp.
123
136
.10.1016/0020-7357(80)90024-4
47.
Verma
,
A.
,
2009
, “
Minimizing Build Time and Surface Inaccuracy of Direct Metal Laser Sintered Parts: An Artificial Intelligence Based Optimization Approach
,” M.S. thesis, University of Cincinnati, Cincinnati, OH, http://rave.ohiolink.edu/etdc/view?acc_num=ucin1249840383
You do not currently have access to this content.