Tissue engineering has been focused on the fabrication of vascularized 3D tissue for decades. Most recently, bioprinting, especially tissue and organ printing, has shown great potential to enable automated robotic-based fabrication of 3D vascularized tissues and organs that are readily available for in vitro studies or in vivo transplantation. Studies have demonstrated the feasibility of the tissue printing process through bioprinting of scaffold-free cellular constructs that are able to undergo self-assembly for tissue formation; however, they are still limited in size and thickness due to the lack of a vascular network. In this paper, we present a framework concept for bioprinting 3D large-scale tissues with a perfusable vascular system in vitro to preserve cell viability and tissue maturation. With the help of a customized Multi-Arm Bioprinter (MABP), we lay out a hybrid bioprinting system to fabricate scale-up tissues and organ models and demonstrated envision its promising application for in vitro tissue engineering and its potential for therapeutic purposes with our proof of concept study.

References

References
1.
Mason
,
C.
,
2005
, “
Tissue Engineering Skin: A Paradigm Shift in Wound Care
,”
Med. Device Technol.
,
16
(
10
), pp.
32
33
.
2.
Langer
,
R.
,
2000
, “
Tissue Engineering
,”
Mol. Ther.
,
1
(
1
), pp.
12
15
.10.1006/mthe.1999.0003
3.
Ozbolat
,
I. T.
, and
Yu
,
Y.
,
2013
, “
Bioprinting Toward Organ Fabrication: Challenges and Future Trends
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
691
699
.10.1109/TBME.2013.2243912
4.
Shor
,
L.
,
Güçeri
,
S.
,
Gandhi
,
M.
,
Wen
,
X.
, and
Sun
,
W.
,
2008
, “
Solid Freeform Fabrication of Polycaprolactone/Hydroxyapatite Tissue Scaffolds
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021018
.10.1115/1.2898411
5.
Griffith
,
L. G.
, and
Naughton
,
G.
,
2002
, “
Tissue Engineering: Current Challenges and Expanding Opportunities
,”
Science
,
295
(
5557
), pp.
1009
1014
.10.1126/science.1069210
6.
Andersson
,
H.
, and
Van Den Berg
,
A.
,
2004
, “
Microfabrication and Microfluidics for Tissue Engineering: State of the Art and Future Opportunities
,”
Lab Chip
,
4
(
2
), pp.
98
103
.10.1039/b314469k
7.
Mironov
,
V.
,
Kasyanov
,
V.
, and
Markwald
,
R. R.
,
2011
, “
Organ Printing: From Bioprinter to Organ Biofabrication Line
,”
Curr. Opin. Biotechnol.
,
22
(
5
), pp.
667
673
.10.1016/j.copbio.2011.02.006
8.
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Gentile
,
C.
,
Zhang
,
J.
,
Markwald
,
R. R.
, and
Mironov
,
V.
,
2010
, “
Towards Organ Printing: Engineering an Intra-Organ Branched Vascular Tree
,”
Expert. Opin. Biol. Ther.
,
10
(
3
), pp.
409
420
.10.1517/14712590903563352
9.
Marga
,
F.
,
Jakab
,
K.
,
Khatiwala
,
C.
,
Shepherd
,
B.
,
Dorfman
,
S.
,
Hubbard
,
B.
,
Colbert
,
S.
, and
Forgacs
,
G.
,
2012
, “
Toward Engineering Functional Organ Modules by Additive Manufacturing
,”
Biofabrication
,
4
(
2
), p.
022001
.10.1088/1758-5082/4/2/022001
10.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
11.
Takebe
,
T.
,
Sekine
,
K.
,
Enomura
,
M.
,
Koike
,
H.
,
Kimura
,
M.
,
Ogaeri
,
T.
,
Zhang
,
R.-R.
,
Ueno
,
Y.
,
Zheng
,
Y.-W.
, and
Koike
,
N.
,
2013
, “
Vascularized and Functional Human Liver From an iPSC-Derived Organ Bud Transplant
,”
Nature
,
499
(
7459
), pp.
481
484
.10.1038/nature12271
12.
Greggio
,
C.
,
De Franceschi
,
F.
,
Figueiredo-Larsen
,
M.
,
Gobaa
,
S.
,
Ranga
,
A.
,
Semb
,
H.
,
Lutolf
,
M.
, and
Grapin-Botton
,
A.
,
2013
, “
Artificial Three-dimensional Niches Deconstruct Pancreas Development in Vitro
,”
Development
,
140
(
21
), pp.
4452
4462
.10.1242/dev.096628
13.
Schubert
,
T.
,
Anders
,
S.
,
Neumann
,
E.
,
Schölmerich
,
J.
,
Hofstädter
,
F.
,
Grifka
,
J.
,
Müller-Ladner
,
U.
,
Libera
,
J.
, and
Schedel
,
J.
,
2009
, “
Long-Term Effects of Chondrospheres on Cartilage Lesions in an Autologous Chondrocyte Implantation Model as Investigated in the SCID Mouse Model
,”
Int. J. Mol. Med.
,
23
(
4
), pp.
455
460
.10.3892/ijmm_00000151
14.
Novosel
,
E. C.
,
Kleinhans
,
C.
, and
Kluger
,
P. J.
,
2011
, “
Vascularization Is the Key Challenge in Tissue Engineering
,”
Adv. Drug Deliv. Rev.
,
63
(
4
), pp.
300
311
.10.1016/j.addr.2011.03.004
15.
Yu
,
Y.
,
Zhang
,
Y.
,
Martin
,
J. A.
, and
Ozbolat
,
I. T.
,
2013
, “
Evaluation of Cell Viability and Functionality in Vessel-Like Bioprintable Cell-laden Tubular Channels
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
91011
.10.1115/1.4024575
16.
Mondy
,
W. L.
,
Cameron
,
D.
,
Timmermans
,
J.-P.
,
Clerk
,
N. D.
,
Sasov
,
A.
,
Casteleyn
,
C.
, and
Piegl
,
L.
,
2009
, “
Computer-Aided Design of Microvasculature Systems for Use in Vascular Scaffold Production
,”
Biofabrication
,
1
(
3
), p.
035002
.10.1088/1758-5082/1/3/035002
17.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.10.1016/j.biomaterials.2009.06.034
18.
Ozbolat
,
I. T.
,
Chen
,
H.
, and
Yu
,
Y.
,
2014
, “
Development of ‘Multi-Arm Bioprinter’ for Hybrid Biofabrication of Tissue Engineering Constructs
,”
Robot Comput. Integr. Manuf.
,
30
(
3
), pp.
295
304
.10.1016/j.rcim.2013.10.005
19.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
025004
.10.1088/1758-5082/5/2/025004
20.
Zhang
,
Y.
,
Yu
,
Y.
, and
Ozbolat
,
I. T.
,
2013
, “
Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
021001
.10.1115/1.4025209
21.
Fujimori
,
H.
,
Asahina
,
K.
,
Shimizu-Saito
,
K.
,
Ikeda
,
R.
,
Tanaka
,
Y.
,
Teramoto
,
K.
,
Morita
,
I.
, and
Teraoka
,
H.
,
2008
, “
Vascular Endothelial Growth Factor Promotes Proliferation and Function of Hepatocyte-Like Cells in Embryoid Bodies Formed From Mouse Embryonic Stem Cells
,”
J. Hepatol.
,
48
(
6
), pp.
962
973
.10.1016/j.jhep.2008.01.031
22.
Brissova
,
M.
,
Fowler
,
M.
,
Wiebe
,
P.
,
Shostak
,
A.
,
Shiota
,
M.
,
Radhika
,
A.
,
Lin
,
P. C.
,
Gannon
,
M.
, and
Powers
,
A. C.
,
2004
, “
Intraislet Endothelial Cells Contribute to Revascularization of Transplanted Pancreatic Islets
,”
Diabetes
,
53
(
5
), pp.
1318
1325
.10.2337/diabetes.53.5.1318
23.
Sekine
,
H.
,
Shimizu
,
T.
,
Sakaguchi
,
K.
,
Dobashi
,
I.
,
Wada
,
M.
,
Yamato
,
M.
,
Kobayashi
,
E.
,
Umezu
,
M.
, and
Okano
,
T.
,
2013
, “
In Vitro Fabrication of Functional Three-Dimensional Tissues With Perfusable Blood Vessels
,”
Nat. Commun.
,
4
(1399), pp. 1–10.10.1038/ncomms2406
24.
Liu
,
H.
,
Collins
,
S. F.
, and
Suggs
,
L. J.
,
2006
, “
Three-dimensional Culture for Expansion and Differentiation of Mouse Embryonic Stem Cells
,”
Biomaterials
,
27
(
36
), pp.
6004
6014
.10.1016/j.biomaterials.2006.06.016
25.
Vander Heiden
,
M. G.
,
Plas
,
D. R.
,
Rathmell
,
J. C.
,
Fox
,
C. J.
,
Harris
,
M. H.
, and
Thompson
,
C. B.
,
2001
, “
Growth Factors Can Influence Cell Growth and Survival Through Effects on Glucose Metabolism
,”
Mol. Cell Biol.
,
21
(
17
), pp.
5899
5912
.10.1128/MCB.21.17.5899-5912.2001
26.
Song
,
J. J.
,
Guyette
,
J. P.
,
Gilpin
,
S. E.
,
Gonzalez
,
G.
,
Vacanti
,
J. P.
, and
Ott
,
H. C.
,
2013
, “
Regeneration and Experimental Orthotopic Transplantation of a Bioengineered Kidney
,”
Nat. Med.
,
19
(
5
), pp.
646
651
.10.1038/nm.3154
27.
Sakaguchi
,
K.
,
Shimizu
,
T.
,
Horaguchi
,
S.
,
Sekine
,
H.
,
Yamato
,
M.
,
Umezu
,
M.
, and
Okano
,
T.
,
2013
, “
In Vitro Engineering of Vascularized Tissue Surrogates
,”
Sci. Rep.
,
3
(
1316
), pp.
1
7
.10.1038/srep01316
You do not currently have access to this content.